[1] Minster J B, Jordan T H. Present-day plate motions[J]. Journal of Geophysical Research, 1978, 83(B11): 5331. [2] Okal E A. A re-evaluation of the great Aleutian and Chilean earthquakes of 1906 August 17[J]. Geophysical Journal International, 2005, 161(2): 268-282. [3] Estabrook C H, Jacob K H, Sykes L R. Body wave and surface wave analysis of large and great earthquakes along the Eastern Aleutian Arc, 1923-1993: imolications for future events[J]. Journal of Geophysical Research, 1994, 99(B6): 11643-11662. [4] López A M, Okal E A. A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake[J]. Geophysical Journal International, 2006, 165(3): 835–849. [5] Johnson J M, Satake K. Source parameters of the 1957 Aleutian earthquake from tsunami waveforms[J]. Geophysical Research Letters, 1993, 20(14): 1487-1490. [6] Kanamori H. The Alaska Earthquake of 1964: Radiation of long-period surface waves and source mechanism[J]. Journal of Geophysical Research, 1970, 75(26): 5029-5040. [7] Wu F T, Kanamori H. Source mechanism of February 4, 1965, Rat Island earthquake[J]. Journal of Geophysical Research, 1973, 78(26): 6082-6092. [8] Herman M W, Furlong K P. Triggering an unexpected earthquake in an uncoupled subduction zone[J]. Science Advances, 2021, 7(13): eabf7590. [9] Kelleher J A. Space-time seismicity of the Alaska-Aleutian seismic zone[J]. Journal of Geophysical Research, 1970, 75(29): 5745-5756. [10] Sykes L R, Kisslinger J B, House L, et al. Rupture zones of great earthquakes in the Alaska-Aleutian arc, 1784 to 1980[J]. Science, 1981, 210(4476): 1343-1345. [11] 顾国华, 王武星. 2016年新西兰7.8级大地震GPS观测结果与弹性回跳模型[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1673-1680. GU Guo-hua, WANG Wu-xing. Results of GPS observations for M7.8 earthquake in 2016 in New Zealand and discussion on elastic rebound model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1673-1680 (in Chinese). [12] 顾国华, 王武星. GPS测得的2018年夏威夷6.9级地震与火山喷发地壳运动[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1191-1197+1204. GU Guo-hua, WANG Wu-xing. Crustal motions observed from GPS observations for the M6.9 earthquake in Hawaii and the eruption of the Kilauea volcano in 2018[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1191-1197+1204(in Chinese). [13] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58-61. [14] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. [15] Akaike H. Likelihood and the Bayes procedure[J]. Trabajos de Estadistica Y de Investigacion Operativa, 1980, 31(1): 143-166. [16] Yabuki T, Matsu’ura M. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip[J]. Geophysical Journal International, 1992, 109(2): 363-375. [17] Zhou X, Cambiotti G, Sun W, et al. The coseismic slip distribution of a shallow subduction fault constrained by prior information: the example of 2011 Tohoku (MW9.0) megathrust earthquake[J]. Geophysical Journal International, 2014, 199(2): 981-995. [18] Pollitz F F, Bürgmann R, Segall P. Joint estimation of after slip rate and post seismic relaxation following the 1989 Loma Prieta earthquake[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B11): 26975-26992. [19] 周云, 李予青, 王卫民, 等. 2020年阿拉斯加MW7.8地震震源特征及邻区地震危险性分析[J]. 地球物理学报, 2021, 64(2): 498-506. ZHOU Yun, LI Yu-qing, WANG Wei-min, et al. Source characteristics of the 2020 Alaska MW7.8 earthquake and seismic risk analysis of adjacent areas[J]. Chinese Journal of Geophysics, 2021, 64(2): 498-506 (in Chinese). [20] Wang W X, Sun W K, Jiang Z S. Comparison of fault models of the 2008 Wenchuan earthquake (MS8.0) and spatial distributions of co-seismic deformations[J]. Tectonophysics, 2010, 491(1-4): 85-95. [21] Dong J, Sun W K, Zhou X, et al. Effects of Earth’s layered structure, gravity and curvature on coseismic deformation[J]. Geophysical Journal International, 2014, 199(3): 1442-1451. [22] Hyndman R D, Wang K. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone[J]. Journal of Geophysical Research Solid Earth, 1993, 98(B2): 2039-2060. [23] Ozawa S, Nishimura T, Suito H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 2011, 475: 373-376. [24] Wang W X, Sun W K, Wu Y Q, et al. Modification of fault slip models of the MW9.0 Tohoku earthquake by far field GPS observations[J]. Journal of Geodynamics, 2014, 75: 22-33. [25] Ozawa S, Nishimura T, Munekane H, et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan[J]. Journal of Geophysical Research Solid Earth, 2012, 117(B7): 7404. [26] 熊维, 谭凯, 刘刚, 等. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、 震后应力影响[J]. 地球物理学报, 2015, 58(11): 4305-4316. XIONG Wei, TAN Kai, LIU Gang, et a1. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(11): 4305-4316 (in Chinese). [27] Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP-a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541. [28] King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953. [29] Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B10): 24347-24358. [30] Vidale J E, Agnew D C, Johnston M J S, et al. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B10): 24567-24572. [31] Lisowski M, Savage J C, Prescott W H, et al. Absence of strain accumulation in the Shumagin seismic gap, Alaska, 1980-1987[J]. Journal of Geophysical Research Solid Earth, 1988, 93(B7): 7909-7922. [32] Fournier T J, Freymueller J T. Transition from locked to creeping subduction in the Shumagin region, Alaska[J]. Geophysical Research Letters, 2007, 34(6): 137-161. [33] Li S S, Freymueller J T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska-Aleutian Subduction zone[J]. Geophysical Research Letters, 2018, 45(8): 3453-3460. [34] Herman M W, Furlong K P, Rob G. The accumulation of slip deficit in Subduction zones in the Absence of Mechanical coupling: Implications for the Behavior of Megathrust earthquakes[J]. Journal of Geophysical Research Solid Earth, 2018, 123(9): 8260-8278. [35] Lay T, Kanamori H, Ammon C J, et al. Depth-varying rupture properties of subduction zone megathrust faults[J]. Journal of Geophysical Research Solid Earth, 2012, 117: B04311. [36] Ye L L, Lay T, Kanamori H, et al. The 22 July 2020 MW7.8 Shumagin seismic gap earthquake: Partial rupture of a weakly coupled megathrust[J]. Earth and Planetary Science Letters, 2021, 562(6A): 116879. |