[1] 汪成民, 李宣瑚. 我国断层气测量在地震科学中的应用现状[J]. 中国地震, 1991(2): 21-32. WANG Cheng-min, LI Xuan-hu. Applications of fracture-gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 1991(2): 21-32 (in Chinese). [2] Fu C C, Yang T F, Du J, et al. Variations of helium and radon concentrations in soil gases from an active fault zone in southern Taiwan[J]. Radiation Measurements, 2008, 43 (Suppl. 1): S348-S352. [3] 李营, 杜建国, 王富宽, 等. 延怀盆地土壤气体地球化学特征[J]. 地震学报, 2009, 31(1): 82-91. LI Ying, DU Jian-guo, WANG Fu-kuan, et al. Geochemical characteristics of soil gas in Yanqing-Huailai basin, North China[J]. Acta Seismologica Sinica, 2009, 31(1): 82-91 (in Chinese). [4] Walia V, Mahajan S, Kumar A, et al. Fault delineation study using soil-gas method in the Dharamsala area, NW Himalayas, India[J]. Radiation Measurements, 2008, 43(S1): S337-S342. [5] Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67(10): 1855-1863. [6] Voltattorni N, Lombardi S. Soil gas geochemistry: Significance and application in geological prospectings[J]. Natural Gas, 2010, 9: 183-205. [7] 李源, 马兴全, 夏修军, 等. 河南新郑—太康断裂东段土壤气体地球化学特征[J]. 地震, 2018, 38(3): 49-57. LI Yuan, MA Xing-quan, XIA Xiu-jun, et al. Geochemical characteristics of soil gas in the eastern section of Xinzheng-Taikang fault, Henan[J]. Earthquake, 2018, 38(3): 49-57 (in Chinese). [8] 刘兆飞, 李营, 陈志, 等. 吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义[J]. 地震学报, 2019, 41(5): 613-632. LIU Zhao-fei, LI Ying, CHEN Zhi, et al. Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities[J]. Acta Seismologica Sinica, 2019, 41(5): 613-632 (in Chinese). [9] 耿杰. 断层逸出气测量在活动断裂研究中的应用[J]. 地震研究, 2020, 43(4): 620-629. GENG Jie. Application of measurements of fault overflow gases in active fault research[J]. Journal of Seismological Research, 2020, 43(4): 620-629 (in Chinese). [10] 杜建国, 康春丽. 地震地下流体发展概述[J]. 地震, 2000, 20(Z1): 107-114. DU Jian-guo, KANG Chun-li. A brief review on study of earthquake-caused change of underground fluid[J]. Earthquake, 2020, 20(Z1): 107-114 (in Chinese). [11] 周晓成, 杜建国, 陈志, 等. 地震地球化学研究进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 340-346. ZHOU Xiao-cheng, DU Jian-guo, CHEN Zhi, et al. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 340-346 (in Chinese). [12] 范雪芳, 张磊, 李自红, 等. 断裂带土壤气高精度氢异常分析[J]. 地震地质, 2016, 38(2): 303-315. FAN Xue-fang, ZHANG Lei, LI Zi-hong, et al. High-accuracy analysis of soil hydrogen anomaly in fault zone[J]. Seismology and Geology, 2016, 38(2): 303-315 (in Chinese). [13] 周晓成, 孙凤霞, 陈志, 等. 汶川MS8.0地震破裂带CO2、 CH4、 Rn和Hg脱气强度[J]. 岩石学报, 2017, 33(1): 291-303. ZHOU Xiao-cheng, SUN Feng-xia, CHEN Zhi, et al. Degassing of CO2, CH4, Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica, 2017, 33(1): 291-303 (in Chinese). [14] Zhou Z H, Tian L, Zhao J, et al. Stress-related pre-seismic water radon concentration variations in the Panjin observation well, China (1994—2020)[J]. Frontiers in Earth Science, 2020, 8: 596283. [15] Zhou Z H, Zhong J, Zhao J, et al. Two mechanisms of earthquake-induced hydrochemical variations in an observation well[J]. Water, 2021, 13: 2385. [16] 马玉川, 孙小龙, 王博, 等. 四川布拖土壤CO2多年释放特征及影响因素[J]. 地震, 2014, 34(4): 30-39. MA Yu-chuan, SUN Xiao-long, WAGN Bo, et al. Secular variation features of CO2 in Butuo, Sichuan Province[J]. Earthquake, 2014, 34(4): 30-39 (in Chinese). [17] 李军辉, 李玲利, 方震, 等. 安徽中西部地区断层气测量及结果分析[J]. 华南地震, 2015, 35(4): 31-36. LI Jun-hui, LI Ling-li, FANG Zhen, et al. Fault gases measurement and analysis in mid-west of Anhui Province[J]. South China Journal of Seismology, 2015, 35(4): 31-36 (in Chinese). [18] 苏鹤军, 王宗礼, 曹玲玲, 等. 断裂带土壤气测量方法在断层活动性研究中的应用以嘉峪关断层为例[J]. 中国地质, 2020, 47(6): 1894-1903. SU He-jun, WANG Zong-li, CAO Ling-ling, et al. The application of measurement method of soil gas from fault zone to fault activity study: A case study of Jiayuguan fault[J]. Geology in China, 2020, 47(6): 1894-1903 (in Chinese). [19] 王喜龙, 贾晓东, 杨梦尧. 辽宁金州断裂断层土壤气地球化学调查[J]. 中国地震, 2021, 37(4): 767-779. WANG Xi-long, JIA Xiao-dong, YANG Meng-yao. Study on geochemical characteristics of soil gas cross Jinzhou fault in Liaoning Province[J]. Earthquake Research in China, 2021, 37(4): 767-779 (in Chinese). [20] 周晓成, 王万丽, 李立武, 等. 金沙江—红河断裂带温泉气体地球化学特征[J]. 岩石学报, 2020, 36(7): 2197-2214. ZHOU Xiao-cheng, WANG Wang-li, LI Li-wu, et al. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, Southeast Tibetan Plateau[J]. Acta Petrologica Sinica, 2020, 36(7): 2197-2214 (in Chinese). [21] Zgonnik V. The occurrence and geoscience of natural hydrogen: A comprehensive review[J]. Earth-Science Reviews, 2020, 203: 103140. [22] Karolyt R, Warr O, Heerden E, et al. The role of porosity in H2/He production ratios in fracture fluids from the Witwatersrand Basin, South Africa[J]. Chemical Geology, 2022, 595: 120788. [23] Wakita H, Nakamura Y, Kita I, et al. Hydrogen release: New indicator of fault activity[J]. Science, 1980, 210(4466): 188-190. [24] 张炜, 罗光伟, 邢玉安, 等. 气体地球化学方法在探索活断层中的应用[J]. 中国地震, 1988(2): 123-125. ZHANG Wei, LUO Guang-wei, XING Yu-an, et al. Application of gas geochemical method in exploring active faults[J]. Earthquake Research in China, 1988, (2): 123-125 (in Chinese). [25] 刘耀炜, 陈华静, 车用太. 我国地震地下流体观测研究40年发展与展望[J]. 国际地震动态, 2006(7): 3-12. LIU Yao-wei, CHEN Hua-jing, CHE Yong-tai. Retrospect and prospect of observation and study on seismic underground fluid in China[J]. Recent Developments in World Seismology, 2006(7): 3-12 (in Chinese). [26] 车用太, 刘耀炜, 何钄. 断层带土壤气中H2观测探索地震短临预报的新途径[J]. 地震, 2015, 35(4): 1-10. CHE Yong-tai, LIU Yao-wei, HE Lan. Hydrogen monitoring in fault zone soil gas: A new approach to short/immediate earthquake prediction[J]. Earthquake, 2015, 35(4): 1-10 (in Chinese). [27] Fang Z, Liu Y W, Yang D X, et al. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project (WFSD), holes 2 and 3 in SW China[J]. Geoscience Journal, 2018, 22: 453-464. [28] 李继业, 张彦吉, 高研, 等. 黑龙江肇东痕量氢野外定点观测实验与分析[J]. 中国地震, 2019, 35(1): 126-133. LI Ji-ye, ZHANG Yan-ji, GAO Yan, et al. Experimental study on the trace hydrogen observation technology in the Zhaodong area of Heilongjiang Province[J]. Earthquake Research in China, 2019, 35(1): 126-133 (in Chinese). [29] 钟骏, 王博, 闫玮, 等. 阿克苏断层氢气浓度动态特征及其映震效能[J]. 地震学报, 2021, 43(5): 615-627. ZHONG Jun, WANG Bo, YAN Wei, et al. Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflecting efficiency[J]. Acta Seismologica Sinica, 2021, 43(5): 615-627 (in Chinese). [30] 周晓成, 郭文生, 杜建国, 等. 呼和浩特地区隐伏断层土壤气氡、 汞地球化学特征[J]. 地震, 2007, 27(1): 70-76. ZHOU Xiao-cheng, GUO Wen-sheng, DU Jian-guo, et al. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake, 2007, 27(1): 70-76 (in Chinese). [31] 周晓成, 柴炽章, 雷启云, 等. 银川隐伏断层带土壤气中H2的地球化学特征[J]. 物探与化探, 2013, 37(1): 147-149. ZHOU Xiao-cheng, CHAI Chi-zhang, LEI Qi-yun, et al. Geochemical characteristics of H2 in soil gas of Yinchuan buried fault belt[J]. Geophysical and Geochemical Exploration, 2013, 37(1): 147-149 (in Chinese). [32] 张慧, 苏鹤军, 李晨桦. 合作市隐伏断层控制性地球化学探测场地试验[J]. 地震工程学报, 2013, 35(3): 618-624. ZHANG Hui, SU He-jun, LI Chen-hua. Field test on the geochemical detection of concealed fault in Hezuo City[J]. China Earthquake Engineering Journal, 2013, 35(3): 618-624 (in Chinese). [33] 孙小龙, 王广才, 邵志刚, 等. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 2016, 23(3): 140-150. SUN Xiao-long, WANG Guang-cai, SHAO Zhi-gang, et al. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone[J]. Earth Science Frontiers, 2016, 23(3): 140-150 (in Chinese). [34] 王明亮, 胡宁, 郭德科, 等. 安阳南断裂带土壤H2、 Rn地球化学特征[J]. 大地测量与地球动力学, 2019, 39(11): 1198-1201. WANG Ming-liang, HU Ning, GUO De-ke, et al. Geochemical characteristics of radon and hydrogen in soil gas of South Anyang fault belts[J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1198-1201 (in Chinese). [35] 祁福利, 张烽龙, 张玉敏, 等. 试论哈尔滨北部地区白垩系天然矿泉水赋存规律[C] //中国地质学会2011年学术年会论文集, 2011: 1-4. QI Fu-li, ZHANG Feng-long, ZHANG Yu-min, et al. On the occurrence law of Cretaceous natural mineral water in northern Harbin[C] //Proceedings of the 2011 Annual Conference of Geological Society of China, 2011: 1-4 (in Chinese). [36] 刘权锋, 盛俭, 卢滔, 等. 扶余/松原—肇东断裂研究综述[J]. 防灾科技学院学报, 2017, 19(3): 8-16. LIU Quan-feng, SHENG Jian, LU Tao, et al. Research status of Fuyu/Songyuan-Zhaodong fault[J]. Journal of Institute of Disaster Prevention, 2017, 19(3): 8-16 (in Chinese). [37] 傅维洲, 贺日政. 松辽盆地及周边地带地震构造特征[J]. 世界地质, 1999, 18(2): 95-100. FU Wei-zhou, HE Ri-zheng. Structural characteristics of earthquakes in Songliao Basin and its peripheral regions[J]. World Geology, 1999, 18(2): 95-100 (in Chinese). [38] 邵博, 沈军, 于晓辉, 等. 松原市扶余北隐伏活动断裂地震潜势研究[J]. 地震工程学报, 2016, 38(4): 616-623. SHAO Bo, SHEN Jun, YU Xiao-hui, et al. Seismic potential research along the North Fuyu fault in Songyuan City[J]. China Earthquake Engineering Journal, 2016, 38(4): 616-623 (in Chinese). [39] 李恩泽, 刘财, 张良怀, 等. 松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展, 2012, 27(4): 1337-1349. LI En-ze, LIU Cai, ZHANG Liang-huai, et al. The correlation of structure and earthquake in Songliao Basin[J]. Progress in Geophysics, 2012, 27(4): 1337-1349 (in Chinese). [40] 国家地震局震害防御司. 中国历史强震目录: 公元前23世纪—公元1911年[M]. 北京: 地震出版社, 1995. Department of Earthquake Disaster Prevention, State Seismological Bureau. Catalogue of historical strong earthquakes in China (23rd Century BC—1911 AD)[M]. Beijing: Seismological Press, 1995 (in Chinese). [41] 李继业. 松辽盆地地球物理数据处理与分析[M]. 哈尔滨: 哈尔滨地图出版社, 2020. LI Ji-ye. Geophysical data processing and analysis in the Songliao Basin[M]. Harbin: Harbin Cartographic Publishing House, 2020 (in Chinese). [42] 范雪芳, 杨芷萌, 李宏伟, 等. 断层带土壤H2浓度变化特征及影响因素研究[J]. 地震研究, 2020, 43(2): 302-309. FAN Xue-fang, YANG Zhi-meng, LI Hong-wei, et al. Research on variation characteristics and influence factors of hydrogen concentration in the soil[J]. Journal of Seismological Research, 2020, 43(2): 302-309 (in Chinese). [43] 李继业, 赵谊, 任建辉, 等. 黑龙江中西部跨断层土壤氢气初步分析[J]. 地震地磁观测与研究, 2019, 40(4): 108-113. LI Ji-ye, ZHAO Yi, REN Jian-hui, et al. Preliminary analysis of hydrogen in cross-fault in central west Heilongjiang Province[J]. Seismological and Geomagnetic Observation and Research, 2019, 40(4): 108-113 (in Chinese). [44] Halas P, Dupuy A, Franceschi M, et al. Hydrogen gas in circular depressions in South Gironde, France: Flux, stock, or artefact?[J]. Applied Geochemistry, 2021, 127: 104928. [45] 孙小龙, 邵志刚, 司学芸, 等. 断层带土壤氢气浓度测量及其影响因素[J]. 地学前缘, 2017, 37(4): 436-440. SUN Xiao-long, SHAO Zhi-gang, SI Xue-yun, et al. Soil hydrogen concentration in fault zone: Analysis of corresponding influence factors[J]. Journal of Geodesy and Geodynamics, 2017, 37(4): 436-440 (in Chinese). [46] 周本刚, 高名修. 松辽盆地几次中强震的构造条件探讨[J]. 地震地质, 1992, 14(2): 145-150. ZHOU Ben-gang, GAO Ming-xiu. The structural analysis of several moderate-strong earthquakes in the Songliao Basin[J]. Seismology and Geology, 1992, 14(2): 145-150 (in Chinese). [47] 康健, 肖宁, 高小其, 等. 松原5.7级地震震中区土壤氢气变化特征[J]. 中国地震, 2019, 35(2): 277-285. KANG Jian, XIAO Ning, GAO Xiao-qi, et al. Characteristics of soil hydrogen variation after the Songyuan MS5.7 earthquake[J]. Earthquake Research in China, 2019, 35(2): 277-285 (in Chinese). [48] Niwa M, Kurosawa H, Shimada K, et al. Identification of pathways for hydrogen gas migration in fault zones with a discontinuous, heterogeneous permeability structure and the relationship to particle size distribution of fault materials[J]. Pure and Applied Geophysics, 2011, 168: 887-900. [49] Annunziatellis A, Beaubien S E, Bigi S, et al. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 353-372. [50] Baubron J C, Rigo A, Toutain J P. Soil gas profiles as a tool to characterize active tectonic areas: The jaut pass example (Pyrenees, France)[J]. Earth and Planetary Science Letters, 2002, 196(1-2): 69-81. [51] 韩晓昆, 李营, 杜建国, 等. 夏垫断裂中南段土壤气体地球化学特征[J]. 物探与化探, 2013, 37(6): 976-982. HAN Xiao-kun, LI Ying, DU Jian-guo, et al. Geochemical characteristics of soil gas in the central south segment of Xiadian fault[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 976-982 (in Chinese). [52] 胡宁, 马志敏, 娄露玲, 等. 汤东活动断裂带气体地球化学特征[J]. 地震学报, 2019, 41(4): 524-535. HU Ning, MA Zhi-min, LOU Lu-ling, et al. Geochemical characteristics of soil gas in Tangdong active fault zone[J]. Acta Seismologica Sinica, 2019, 41(4): 524-535 (in Chinese). [53] Kumar G, Kumari P, Kumar A, et al. A study of radon and thoron concentration in the soil along the active fault of NW Himalayas in India[J]. Annals of Geophysics, 2017, 60(3): S0329. [54] Yuce G, Fu C C, Alessandro W D′, et al. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik Basin (Hatay), Turkey[J]. Chemical Geology, 2017, 469: 129-146. [55] 陈亮, 王惠艳, 孙诚业. 多背景下异常衬值法在地球化学异常信息提取中的应用以黑龙江多宝山地区为例[J]. 物探与化探, 2018, 42(6): 1150-1155. CHEN Liang, WANG Hui-yan, SUN Cheng-ye. The application of anomaly contrast to extracting geochemical anomaly information: A study of Duobaoshan area in Heilongjiang Province[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1150-1155 (in Chinese). [56] 于吉鹏, 孟国杰, 苏小宁, 等. 基于GPS观测研究中国东北地区现今地壳形变特征[J]. 地震, 2019, 39(3): 11-27. YU Ji-peng, MENG Guo-jie, SU Xiao-ning, et al. The current crustal deformation of Northeast China deduced from GPS observations[J]. Earthquake, 2019, 39(3): 11-27 (in Chinese). |