EARTHQUAKE ›› 2025, Vol. 45 ›› Issue (3): 101-120.doi: 10.12196/j.issn.1000-3274.2025.03.007
Previous Articles Next Articles
XIONG Hai-cheng1,2, LI Yan-chuan2, WANG Zhen-jie1, SHAN Xin-jian2, ZHANG Guo-hong2, QU Chun-yan2
Received:2024-12-12
Revised:2025-04-02
Online:2025-07-31
Published:2025-10-23
CLC Number:
XIONG Hai-cheng, LI Yan-chuan, WANG Zhen-jie, SHAN Xin-jian, ZHANG Guo-hong, QU Chun-yan. Earthquake Spontaneous Rupture Simulation and Its Application Progress in the Qinghai-Xizang Plateau[J]. EARTHQUAKE, 2025, 45(3): 101-120.
| [1] Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542): 574-577. [2] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑: 地球科学), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. Basic characteristics of Chinese active structures[J]. Science China (Series D: Earth Science), 2002, 32(12): 1020-1030 (in Chinese). [3] 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 289-295. ZHONG Da-lai, DING Lin. Discussion on the uplift process and mechanism of the Tibet Plateau[J]. Science China (Series D: Earth Science), 1996, 26(4): 289-295 (in Chinese). [4] 张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学(D辑: 地球科学), 2013, 43(10): 1607-1620. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science China (Series D: Earth Science), 2013, 43(10): 1607-1620 (in Chinese). [5] Ren Z K, Zhang Z Q. Structural analysis of the 1997 MW7.5 Manyi earthquake and the kinematics of the Manyi fault, central Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2019, 179: 149-164. [6] Wang H, Xu C J, Ge L L. Coseismic deformation and slip distribution of the 1997 MW7.5 Manyi, Tibet, earthquake from InSAR measurements[J]. Journal of Geodynamics, 2007, 44(3-5): 200-212. [7] Xu X W, Yu G H, Klinger Y, et al. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8), Northern Tibetan Plateau, China[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05316. [8] Wang Q, Qiao X J, Lan Q G, et al. Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4(9): 634-640. [9] Tobita M, Nishimura T, Kobayashi T, et al. Estimation of coseismic deformation and a fault model of the 2010 Yushu earthquake using PALSAR interferometry data[J]. Earth and Planetary Science Letters, 2011, 307(3-4): 430-438. [10] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xin-jian, QU Chun-yan, GONG Wen-yu, et al. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536 (in Chinese). [11] Pan J W, Li H B, Chevalier M L, et al. Co-seismic rupture of the 2021, MW7.4 Maduo earthquake (Northern Tibet): Short-cutting of the Kunlun fault big bend[J]. Earth and Planetary Science Letters, 2022, 594: 117703. [12] Li Y S, Jiang W L, Li Y J, et al. Coseismic rupture model and tectonic implications of the January 7 2022, Menyuan MW6.6 earthquake constraints from InSAR observations and field investigation[J]. Remote Sensing, 2022, 14(9): 2111. [13] Li Y C, Zhao D Z, Shan X J, et al. Coseismic slip model of the 2022 MW6.7 Luding (Tibet) earthquake: Pre- and post-earthquake interactions with surrounding major faults[J]. Geophysical Research Letters, 2022, 49(24): e2022GL102043. [14] Hao M, Freymueller J T, Wang Q L, et al. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data[J]. Earth and Planetary Science Letters, 2016, 437: 1-8. [15] He J K, Vernant P, Chéry J, et al. Nailing down the slip rate of the Altyn Tagh fault[J]. Geophysical Research Letters, 2013, 40(20): 5382-5386. [16] Wang W, Qiao X J, Ding K H. Present-day kinematics in Southeastern Tibet inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(1): e2020JB021305. [17] Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of Western Tibet[J]. Science, 2004, 305(5681): 236-239. [18] Zhou Y, Thomas M Y, Parsons B, et al. Time-dependent postseismic slip following the 1978 M7.3 Tabas-e-Golshan, Iran earthquake revealed by over 20 years of ESA InSAR observations[J]. Earth and Planetary Science Letters, 2018, 483(20): 64-75. [19] 许才军, 李志才. 华北地区活动地块边界带运动及块体内部变形分析[J]. 武汉大学学报(信息科学版), 2002, 27(4): 348-351. XU Cai-jun, LI Zhi-cai. Crustal movement on the boundary zones between active blocks and internal deformation of blocks in north China[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 348-351 (in Chinese). [20] 张培震, 王敏, 甘卫军, 等. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 2003, 10(S1): 81-92. ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 2003, 10(S1): 81-92 (in Chinese). [21] Hu Q B, Liang H W, Li H Y, et al. Aftershock spatiotemporal activity and coseismic slip model of the 2022 6.7 Luding earthquake: Fault geometry structures and complex rupture characteristics[J]. Remote Sensing, 2025, 17(1): 70. [22] Jin Z Y, Fialko Y. Coseismic and early postseismic deformation due to the 2021 M7.4 Maduo (China) earthquake[J]. Geophysical Research Letters, 2021, 48(21): e2021GL095213. [23] Zhao D Z, Qu C Y, Chen H, et al. Tectonic and geometric control on fault kinematics of the 2021 MW7.3 Maduo (China) earthquake inferred from interseismic, coseismic, and postseismic InSAR observations[J]. Geophysical Research Letters, 2021, 48(18): e2021GL095417. [24] Liu T, Hong S Y, She Y W, et al. Co- and post-seismic deformation of the 2022 Menyuan MW6.6 earthquake from InSAR and GPS observations[J]. Geophysical Journal International, 2025, 240(1): 708-720. [25] Huang X, Jolivet R, Li Y C, et al. The 2023 MW6.9 Sarez, Tajikistan earthquake: Subparallel faulting and distributed deformation of the Pamir[J]. Geophysical Journal International, 2025, 240(3): 1790-1801. [26] Qu C Y, Qiao X, Shan X J, et al. InSAR 3-D coseismic displacement field of the 2015 MW7.8 Nepal earthquake: Insights into complex fault kinematics during the event[J]. Remote Sensing, 2020, 12(23): 3982. [27] Ren C M, Wang Z X, Taymaz T, et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet[J]. Science, 2024, 383(6680): 305-311. [28] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. [29] Lasserre C, Peltzer G, Crampé F, et al. Coseismic deformation of the 2001 MW7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B12): B12408. [30] Xiong W, Chen W, Wang D Z, et al. Coseismic slip and early afterslip of the 2021 MW7.4 Maduo, China earthquake constrained by GPS and InSAR data[J]. Tectonophysics, 2022, 840: 229558. [31] 张海明, 陈晓非. 中国地球物理学会第十九届年会论文集[C]. 南京: 南京师范大学出版社, 2003: 521. ZHANG Hai-ming, CEHN Xiao-fei. Proceedings of the 19th annual meeting of the Chinese geophysical society[C]. Nanjing: Nanjing Normal University Publishing House, 2003: 521 (in Chinese). [32] 张文强. 破裂动力学的曲线网格有限差分方法研究及高性能计算[D]. 合肥: 中国科学技术大学, 2020. ZHANG Wen-qiang. Study of curve grid finite difference method in rupture dynamics and high performance computing[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese). [33] Das S, Aki K. A numerical study of two-dimensional spontaneous rupture propagation[J]. Geophysical Journal International, 1977, 50(3): 643-668. [34] Duan B C. Role of initial stress rotations in rupture dynamics and ground motion: A case study with implications for the Wenchuan earthquake[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5): B05301. [35] Harris R A, Day S M. Dynamics of fault interaction: Parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4461-4472. [36] Oglesby D D, Archuleta R J, Nielsen S B. The three-dimensional dynamics of dipping faults[J]. Bulletin of the Seismological Society of America, 2000, 90(3): 616-628. [37] Xu X R, Zhang Z G, Hu F, et al. Dynamic rupture simulations of the 1920 MS8.5 Haiyuan earthquake in China[J]. Bulletin of the Seismological Society of America, 2019, 109(5): 2009-2020. [38] Zhang Z G, Xu J K, Chen X F. The supershear effect of topography on rupture dynamics[J]. Geophysical Research Letters, 2016, 43(4): 1457-1463. [39] Aochi H, Fukuyama E, Matsu’ura M. Spontaneous rupture propagation on a non-planar fault in 3-D elastic medium[J]. Pure and Applied Geophysics, 2000, 157(11): 2003-2027. [40] Aochi H, Fukuyama E, Matsu’ura M. Selectivity of spontaneous rupture propagation on a branched fault[J]. Geophysical Research Letters, 2000, 27(22): 3635-3638. [41] Zhang H M, Chen X F. Dynamic rupture on a planar fault in three-dimensional half space-Ⅰ. Theory[J]. Geophysical Journal International, 2006, 164(3): 633-652. [42] Zhang H M, Chen X F. Dynamic rupture on a planar fault in three-dimensional half-space-Ⅱ. Validations and numerical experiments[J]. Geophysical Journal International, 2006, 167(2): 917-932. [43] Andrews D J. Rupture propagation with finite stress in antiplane strain[J]. Journal of Geophysical Research, 1976, 81(20): 3575-3582. [44] Kase Y, Day S M. Spontaneous rupture processes on a bending fault[J]. Geophysical Research Letters, 2006, 33(10): L10302. [45] Cruz-Atienza V M, Virieux J. Dynamic rupture simulation of non-planar faults with a finite-difference approach[J]. Geophysical Journal International, 2004, 158(3): 939-954. [46] Zhang Z G, Zhang W Q, Chen X F. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophysical Journal International, 2014, 199(2): 860-879. [47] Zhang Z G, Zhang W Q, Chen X F. Dynamic rupture simulations of the 2008 MW7.9 Wenchuan earthquake by the curved grid finite-difference method[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(10): 10565-10582. [48] Aagaard B T, Knepley M G, Williams C A. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(6): 3059-3079. [49] Pelties C, de la Puente J, Ampuero J P, et al. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B2): B02309. [50] Zhang W Q, Liu Y J, Chen X F. A mixed-flux-based nodal discontinuous Galerkin method for 3D dynamic rupture modeling[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(6): e2022JB025817. [51] Harris R A, Barall M, Aagaard B, et al. A suite of exercises for verifying dynamic earthquake rupture codes[J]. Seismological Research Letters, 2018, 89(3): 1146-1162. [52] Dalguer L A, Day S M. Staggered-grid split-node method for spontaneous rupture simulation[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B2): B02302. [53] Zhang Z G, Zhang W Q, Chen X F. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophysical Journal International, 2014, 199(2): 860-879. [54] Aagaard B T, Heaton T H, Hall J F. Dynamic earthquake ruptures in the presence of lithostatic normal stresses: Implications for friction models and heat production[J]. Bulletin of the Seismological Society of America, 2001, 91(6): 1765-1796. [55] Day S M, Ely G P. Effect of a shallow weak zone on fault rupture; numerical simulation of scale-model experiments[J]. Bulletin of the Seismological Society of America, 2002, 92(8): 3022-3041. [56] Tago J, Cruz Atienza V M, Virieux J, et al. A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B9): B09312. [57] Duan B C, Oglesby D D. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05309. [58] Barall M. A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault[J]. Geophysical Journal International, 2009, 178(2): 845-859. [59] Daub E G. Meet a New Code: Daub Finite Difference[Z]. 2016. [60] Kase Y, Kuge K. Rupture propagation beyond fault discontinuities: Significance of fault strike and location[J]. Geophysical Journal International, 2001, 147(2): 330-342. [61] Ma S, Custódio S, Archuleta R J, et al. Dynamic modeling of the 2004 MW6.0 Parkfield, California, earthquake[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B2): B02301. [62] Ma S, Andrews D J. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B4): B04304. [63] Galvez P, Ampuero J P, Dalguer L A, et al. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake[J]. Geophysical Journal International, 2014, 198(2): 1222-1240. [64] Ely G P, Day S M, Minster J. A support-operator method for 3-D rupture dynamics[J]. Geophysical Journal International, 2009, 177(3): 1140-1150. [65] Kaneko Y, Lapusta N, Ampuero J P. Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B9): B09317. [66] Duru K, Dunham E M. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids[J]. Journal of Computational Physics, 2016, 305: 185-207. [67]Bletery Q, Thomas A M, Rempel A W, et al. Mega-earthquakes rupture flat megathrusts[J]. Science, 2016, 354(6315): 1027-1031. [68]Howarth J D, Barth N C, Fitzsimons S J, et al. Spatiotemporal clustering of great earthquakes on a transform fault controlled by geometry[J]. Nature Geoscience, 2021, 14(5): 314-320. [69] King G C P. Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure[J]. Pure and Applied Geophysics, 1986, 124(3): 567-585. [70] Wesnousky S G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1609-1632. [71]Zhang Y J, Tang X W, Liu D C, et al. Geometric controls on cascading rupture of the 2023 Kahramanmaraş earthquake doublet[J]. Nature Geoscience, 2023, 16(11): 1054-1060. [72] Zhang H M, Chen X F. Dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake[J]. Earthquake Science, 2009, 22(1): 3-12. [73] Biasi G P, Wesnousky S G. Bends and ends of surface ruptures[J]. Bulletin of the Seismological Society of America, 2017, 107(6): 2543-2560. [74] Duman T Y, Emre O, Dogan A, et al. Step-over and bend structures along the 1999 Duzce earthquake surface rupture, North Anatolian Fault, Turkey[J]. Bulletin of the Seismological Society of America, 2005, 95(4): 1250-1262. [75] Elliott A J, Oskin M E, Liu-zeng J, et al. Persistent rupture terminations at a restraining bend from slip rates on the Eastern Altyn Tagh fault[J]. Tectonophysics, 2018, 733: 57-72. [76] Lozos J C, Oglesby D D, Duan B C, et al. The effects of double fault bends on rupture propagation: A geometrical parameter study[J]. Bulletin of the Seismological Society of America, 2011, 101(1): 385-398. [77] Xu D Y, Li Z B, Zhang Z G, et al. The 2022 MW6.6 Menyuan earthquake: An early-terminated runaway rupture by the complex fault geometry[J]. Earth and Planetary Science Letters, 2024, 638: 118746. [78] Xu D Y, Zhang Z G, Qian Y Y, et al. Dynamic modeling of the 2020 MW6.0 Jiashi earthquake: Constrained by geodetic and seismic observations[J]. Seismological Research Letters, 2022, 93(6): 3278-3290. [79] Lozos J C. The effect of along-strike variation in dip on rupture propagation on strike-slip faults[J]. Geosphere, 2021, 17(6): 1616-1630. [80] Gu Y H, Zhang Z G, Wang W Q, et al. Dynamic rupture modeling and ground-motion simulations of the 2022 MW6.6 Luding earthquake[J]. Seismological Research Letters, 2023, 94(6): 2575-2585. [81] Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature, 2006, 444(7117): 358-360. [82]Harris R A, Day S M. Dynamic 3D simulations of earthquakes on en echelon faults[J]. Geophysical Research Letters, 1999, 26(14): 2089-2092. [83] Zhang P Z, Mao F Y, Slemmons D B, et al. Rupture terminations and size of segment boundaries from historical earthquake ruptures in the basin and range province[J]. Tectonophysics, 1999, 308(1-2): 37-52. [84] Ando R, Kaneko Y. Dynamic rupture simulation reproduces spontaneous multifault rupture and arrest during the 2016 MW7.9 Kaikoura earthquake[J]. Geophysical Research Letters, 2018, 45(23): 12875-12883. [85] Hamling I J, Hreinsdóttir S, Clark K, et al. Complex multifault rupture during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334): eaam7194. [86] Ulrich T, Gabriel A A, Ampuero J P, et al. Dynamic viability of the 2016 MW7.8 Kaikōura earthquake cascade on weak crustal faults[J]. Nature Communications, 2019, 10(1): 1213. [87] 李正芳, 肖海波, 周本刚. 阶区对走滑型地震地表破裂带传播与终止行为的影响[J]. 地震地质, 2015, 37(1): 126-138. LI Zheng-fang, XIAO Hai-bo, ZHOU Ben-gang. Effect of fault steps on propagation and termination behavior of strike-slip earthquake surface ruptures[J]. Seismology and Geology, 2015, 37(1): 126-138 (in Chinese). [88] Yu H Y, Hu F, Xu J K, et al. Dynamic rupture simulation of the 1833 Songming, Yunnan, China, M8.0 earthquake: Effects from stepover location and overlap distance[J]. Earth and Space Science, 2022, 9(2): e2021EA002100. [89] Bhat H S, Dmowska R, Rice J R, et al. Dynamic slip transfer from the Denali to Totschunda faults, Alaska: Testing theory for fault branching[J]. Bulletin of the Seismological Society of America, 2004, 94(6B): 202-213. [90] Kame N, Rice J R, Dmowska R. Effects of prestress state and rupture velocity on dynamic fault branching[J]. Journal of Geophysical Research, 2003, 108(B5): 2265. [91] Bhat H S, Olives M, Dmowska R, et al. Role of fault branches in earthquake rupture dynamics[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B11): B11309. [92] Preuss S, Ampuero J P, Gerya T, et al. Characteristics of earthquake ruptures and dynamic off-fault deformation on propagating faults[J]. Solid Earth, 2020, 11(4): 1333-1360. [93] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662): 37-42. [94] Lee J, Tsai V C, Hirth G, et al. Fault-network geometry influences earthquake frictional behaviour [J]. Nature, 2024, 631(8019): 106-110. [95] Yao S L, Yang H F. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault[J]. Earth and Planetary Science Letters, 2022, 578: 117296. [96] 杨宏峰, 姚素丽, 陈翔. 非均匀断层上的破裂传播及对震级预测的挑战[J]. 科学通报, 2022, 67(13): 1390-1403. YANG Hong-feng, YAO Su-li, CHEN Xiang. Rupture propagation on heterogeneous fault: Challenges for predicting earthquake magnitude[J]. Chinese Science Bulletin, 2022, 67(13): 1390-1403 (in Chinese). [97] Lozos J C, Harris R A, Murray J R, et al. Dynamic rupture models of earthquakes on the Bartlett Springs fault, Northern California[J]. Geophysical Research Letters, 2015, 42(11): 4343-4349. [98] Yang H F, Yao S L, He B, et al. Deriving rupture scenarios from interseismic locking distributions along the subduction megathrust[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(10): 10376-10392. [99] Harris R A, Barall M, Lockner D A, et al. A geology and geodesy based model of dynamic earthquake rupture on the Rodgers Creek-Hayward-Calaveras fault system, California[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB020577. [100] Andrews D J. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687. [101] Gu Y H, Zhang Z G, Wang W Q, et al. Dynamic rupture simulations based on interseismic locking models: Taking the Suoerkuli section of the Altyn Tagh fault as an example[J]. Geophysical Journal International, 2023, 234(3): 1737-1751. [102] Li Y C, Nocquet J M, Shan X J, et al. Heterogeneous interseismic coupling along the Xianshuihe-Xiaojiang fault system, Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2020JB021187. [103] Li Y C, Nocquet J M, Shan X J, et al. Geodetic observations of shallow creep on the Laohushan-Haiyuan fault, Northeastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(6): e2020JB021576. [104] 张振国. 三维非平面断层破裂动力学研究[D]. 合肥: 中国科学技术大学, 2014. ZHANG Zhen-guo. Study on rupture dynamics of three-dimensional non-planar fault[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [105] Ida Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. Journal of Geophysical Research, 1972, 77(20): 3796-3805. [106] Lozos J C, Dieterich J H, Oglesby D D. The effects of d0 on rupture propagation on fault stepovers[J]. Bulletin of the Seismological Society of America, 2014, 104(4): 1947-1953. [107] Weng H H, Yang H F. Constraining frictional properties on fault by dynamic rupture simulations and near-field observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(8): 6658-6670. [108]Beeler N M, Tullis T E, Goldsby D L. Constitutive relationships and physical basis of fault strength due to flash heating[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B1): B01401. [109] Dieterich J H. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics, 1992, 211(1-4): 115-134. [110] Ruina A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B12): 10359-10370. [111] Walker K T, Shearer P M. Illuminating the near-sonic rupture velocities of the intracontinental Kokoxili MW7.8 and Denali fault MW7.9 strike-slip earthquakes with global P wave back projection imaging[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B2): B02304. [112] Xu J K, Zhang H M, Chen X F. Rupture phase diagrams for a planar fault in 3-D full-space and half-space[J]. Geophysical Journal International, 2015, 202(3): 2194-2206. [113] Chen X F, Zhang H M. Modelling rupture dynamics of a planar fault in 3-D half space by boundary integral equation method: An overview[J]. Pure and Applied Geophysics, 2006, 163(2-3): 267-299. [114] Ouyang F, Shao Z G, Zhang W, et al. Dynamic rupture and strong ground-motion simulations of the 8 January 2022 MS6.9 Qinghai Menyuan earthquake[J]. Seismological Research Letters, 2025, 96(1): 65-77. [115] Weng H H, Yang H F. Seismogenic width controls aspect ratios of earthquake ruptures[J]. Geophysical Research Letters, 2017, 44(6): 2725-2732. [116] Andrews D J, Barall M. Specifying initial stress for dynamic heterogeneous earthquake source models[J]. Bulletin of the Seismological Society of America, 2011, 101(5): 2408-2417. [117] Li B, Gabriel A A, Ulrich T, et al. Dynamic rupture models, fault interaction and ground motion simulations for the segmented Húsavík-Flatey fault zone, northern Iceland[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(6): e2022JB025886. [118] Wen Y M, Cai J F, He K F, et al. Dynamic rupture of the 2021 MW7.4 Maduo earthquake: An intra-block event controlled by fault geometry[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(1): e2023JB027247. [119] 徐秀绒. 海原断裂带地震数值模拟[D]. 合肥: 中国科学技术大学, 2019. XU Xiu-rong. Numerical simulation of earthquakes on the Haiyuan fault[D]. Hefei: University of Science and Technology of China, 2019 (in Chinese). [120] 余厚云. 川滇地区破坏性地震的震源动力学过程及强地面运动模拟与震害评估[D]. 合肥: 中国科学技术大学, 2020. YU Hou-yun. Rupture dynamics and strong ground motion simulation of destructive earthquakes in the Sichuan-Yunnan region[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese). [121] 李陈侠, 戴华光, 陈永明, 等. 对1937年托索湖7.5级地震若干问题的探讨[J]. 地震地质, 2006, 28(1): 12-21. LI Chen-xia, DAI Hua-guang, CHEN Yong-ming, et al. The discussion on some problems of the MS7.5 Tuosuohu lake earthquake in 1937[J]. Seismology and Geology, 2006, 28(1): 12-21 (in Chinese). [122] 王仁, 何国琦, 殷有泉, 等. 华北地区地震迁移规律的数学模拟[J]. 地震学报, 1980, 2(1): 32-42. WANG Ren, HE Guo-qi, YIN You-quan, et al. A mathematical simulation for the pattern of seismic transference in North China[J]. Acta Seismologica Sinica, 1980, 2(1): 32-42 (in Chinese). [123] Harris R A, W S R. Changes in static stress on southern California faults after the 1992 Landers earthquake[J]. Nature, 1992, 360(6401): 251-254. [124] Feng J Z, Li P E, Liao L, et al. Numerical simulation study on the spontaneous rupture process and its influencing factors of the 2001 MS8.1 Kunlun earthquake in China[J]. Tectonophysics, 2023, 862: 229956. [125] Zhu X J, He J K, Xiao J, et al. Uniform slip rates of the Altyn Tagh and the Kunlun faults likely reflect lateral variation of frictional strength of the faults[J]. Terra Nova, 2020, 32(5): 381-389. [126] Wang W Q, Zhang Z G, Zhang W Q, et al. CGFDM3D-EQR: A platform for rapid response to earthquake disasters in 3D complex media[J]. Seismological Research Letters, 2022, 93(4): 2320-2334. [127] Yu H Y, Zhang W Q, Zhang Z G, et al. Investigation on the dynamic rupture of the 1970 MS7.7 Tonghai, Yunnan, China, earthquake on the Qujiang fault[J]. Bulletin of the Seismological Society of America, 2020, 110(2): 898-919. [128] Li Y L, Wang Z J, Zhang Z G, et al. A physics-based seismic risk assessment of the Qujiang fault: From dynamic rupture to disaster estimation[J]. International Journal of Disaster Risk Science, 2024, 15(1): 165-177. [129] Zhang Z G, Zhang W Q, Xin D H, et al. A dynamic-rupture model of the 2019 MW7.1 Ridgecrest earthquake being compatible with the observations[J]. Seismological Research Letters, 2020, 92(2A): 870-876. [130] Diao F Q, Weng H H, Ampuero J P, et al. Physics-based assessment of earthquake potential on the Anninghe-Zemuhe fault system in Southwestern China[J]. Nature Communications, 2024, 15(1): 6908. [131] Lu R Q, Liu Y D, Xu X W, et al. Three-dimensional model of the lithospheric structure under the Eastern Tibetan Plateau: Implications for the active tectonics and seismic hazards[J]. Tectonics, 2019, 38(4): 1292-1307. [132] 姚琪, 鲁人齐, 苏鹏, 等. 三维地质建模为地震数值预测带来的机遇[J]. 地震地质, 2024, 46(1): 1-18. YAO Qi, LU Ren-qi, SU Peng, et al. Opportunities brought by 3D geoscience modeling for earthquake numerical forecasting[J]. Seismology and Geology, 2024, 46(1): 1-18 (in Chinese). [133] Lozos J C, Harris R A. Dynamic rupture simulations of the M6.4 and M7.1 July 2019 Ridgecrest, California, earthquakes[J]. Geophysical Research Letters, 2020, 47(7): e2019GL086020. [134]Wang Z J, Zhang W Q, Taymaz T, et al. Dynamic rupture process of the 2023 MW7.8 Kahramanmaraş earthquake (SE Türkiye): Variable rupture speed and implications for seismic hazard[J]. Geophysical Research Letters, 2023, 50(15): e2023GL104787. [135] Zhao D Z, Qu C Y, Shan X J, et al. An updated fault coupling model along major block-bounding faults on the Eastern and Northeastern Tibetan Plateau from a stress-constrained inversion of GPS and InSAR data[J]. Journal of Geophysical Research: Solid Earth, 2024, 129(4): e2023JB028483. |
| [1] | LIN Jing-dong, XIONG Ren-wei, YANG Pan-xin. Application of High-Resolution Stereo Image Extraction DEM in Estimating the Sliding Rate of Faults in Small Pull Apart Basins [J]. EARTHQUAKE, 2025, 45(1): 147-160. |
| [2] | HUANG Feng, XIONG Ren-wei, LIN Jing-dong, ZHAO Zheng, YANG Pan-xin. Geomorphic Index and Activity Characteristics of the Mid-Segment of Jiali Fault [J]. EARTHQUAKE, 2024, 44(1): 1-18. |
| [3] | YANG Ye-xin, MENG Guo-jie, WU Wei-wei, ZHAO Guo-qiang. Characteristics of Crustal Strain and Stress in the Northeastern Qinghai-Xizang Plateau [J]. EARTHQUAKE, 2022, 42(4): 1-13. |
| [4] | XIAO Yan-feng, HU Xiao-bin, TAN Kai. Study on the Coseismic Slip Model of the 2020 Dingri MW5.7 Earthquake in Xizang, China Constrained by InSAR Measurements [J]. EARTHQUAKE, 2022, 42(2): 140-148. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||