EARTHQUAKE ›› 2025, Vol. 45 ›› Issue (3): 13-30.doi: 10.12196/j.issn.1000-3274.2025.03.002
Previous Articles Next Articles
SONG Cheng1, ZHANG Yong-xian2, BI Jin-meng1, XU Ke1, GAO Ye1, ZHANG Ming-dong1, XIA Cai-yun3, TIAN Wei-xi4, FENG Mao-ning2
Received:2024-04-10
Revised:2024-09-03
Online:2025-07-31
Published:2025-10-23
CLC Number:
SONG Cheng, ZHANG Yong-xian, BI Jin-meng, XU Ke, GAO Ye, ZHANG Ming-dong, XIA Cai-yun, TIAN Wei-xi, FENG Mao-ning. Comparative Research of the 2016 MS6.4 and 2022 MS6.9 Earthquakes in Menyuan Based on the z-Value and PI Method[J]. EARTHQUAKE, 2025, 45(3): 13-30.
| [1] 支明, 孙丽, 杨志高, 等. 2022年1月8日青海门源6.9级地震的快速测定与数据产品产出[J]. 中国地震, 2022, 38(1): 30-41. ZHI Ming, SUN Li, YANG Zhi-gao, et al. Fast determination and data production of the Menyuan 6.9 earthquake on Jan 08, 2022, Qinghai Province[J]. Earthquake Research in China, 2022, 38(1): 30-41 (in Chinese). [2] 左可桢, 陈继锋, 蒲举, 等. 2016-01-21青海门源MS6.4地震震前应力降变化特征研究[J]. 大地测量与地球动力学, 2018, 38(6): 629-633. ZUO Ke-zhen, CHEN Ji-feng, PU Ju, et al. Study of the spatial and temporal distribution characteristics of stress drop before the January 21, 2016 MS6.4 Menyuan earthquake[J]. Journal of Geodesy and Geodynamics, 2018, 38(6): 629-633 (in Chinese). [3] 李智敏, 盖海龙, 李鑫, 等. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报, 2022, 96(1): 330-335. LI Zhi-min, GAI Hai-long, LI Xin, et al. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai, China[J]. Acta Geologica Sinica, 2022, 96(1): 330-335 (in Chinese). [4] 苑争一, 赵静, 牛安福. 2022年1月8日青海门源MS6.9地震震前变形特征分析[J]. 中国地震, 2022, 38(3): 389-398. YUAN Zheng-yi, ZHAO Jing, NIU An-fu. Analysis of deformation characteristics before the Menyuan MS6.9 earthquake on January 8, 2022 in Qinghai Province[J]. Earthquake Research in China, 2022, 38(3): 389-398 (in Chinese). [5] 赵凌强, 孙翔宇, 詹艳, 等. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报, 2022, 65(4): 1536-1546. ZHAO Ling-qiang, SUN Xiang-yu, ZHAN Yan, et al. The seismogenic model of the Menyuan MS6.9 earthquake on January 8, 2022, Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics, 2022, 65(4): 1536-1546 (in Chinese). [6] 姜文亮, 李永生, 田云锋, 等. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质, 2017, 39(3): 536-549. JIANG Wen-liang, LI Yong-sheng, TIAN Yun-feng, et al. Research of seismogenic structure of the Menyuan MS6.4 earthquake on January 21, 2016, in Lenglongling Area of NE Tibetan Plateau[J]. Seismology and Geology, 2017, 39(3): 536-549 (in Chinese). [7] 王琼, 肖卓, 武粤, 等. 2022年1月8日青海门源MS6.9地震深部构造背景浅析[J]. 地震学报, 2022, 44(2): 211-222. WANG Qiong, XIAO Zhuo, WU Yue, et al. The deep tectonic background of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province[J]. Acta Seismologica Sinica, 2022, 44(2): 211-222 (in Chinese). [8] 姜佳佳, 张辉. 祁连山地震带强震前ML4.0地震活动特征研究[J]. 国际地震动态, 2018(8): 79-80. JIANG Jia-jia, ZHANG Hui. Research on the seismicity of ML4.0 before strong earthquakes in Qilianshan seismic belt[J]. Recent Developments in World Seismology, 2018(8): 79-80 (in Chinese). [9] 郭鹏, 韩竹军, 安艳芬, 等. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学: 地球科学, 2017, 47(5): 617-630. GUO Peng, HAN Zhu-jun, AN Yan-fen, et al. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China: Earth Sciences, 2017, 47(5): 617-630 (in Chinese). [10] 殷娜, 邓淼, 万飞, 等. 2016年门源MS6.4地震孕震机制及构造意义的研究现状[J]. 山西地震, 2021(2): 21-26+43. YIN Na, DENG Miao, WAN Fei, et al. Research status of seismogenic mechanism and tectonic significance of the 2016 Menyuan MS6.4 earthquake[J]. Earthquake Research in Shanxi, 2021(2): 21-26+43 (in Chinese). [11] 柳新强, 王燕, 胡泊. 2016门源6.4级地震前祁连山—海原断裂的活动速率反演[J]. 工程勘察, 2018, 46(9): 49-52. LIU Xin-qiang, WANG Yan, HU Bo. Inversion of fault slip rate before the 2016 Menyuan 6.4 magnitude earthquake[J]. Geotechnical Investigation & Surveying, 2018, 46(9): 49-52 (in Chinese). [12] 韩立波. 2022年青海门源MS6.9地震震源机制解[J]. 地震科学进展, 2022, 52(2): 49-54. HAN Li-bo. Focal mechanism of 2022 Menyuan MS6.9 earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022, 52(2): 49-54 (in Chinese). [13] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897 (in Chinese). [14] 朱琳, 戴勇, 石富强, 等. 祁连—海原断裂带库仑应力演化及地震危险性[J]. 地震学报, 2022, 44(2): 223-236. ZHU Lin, DAI Yong, SHI Fu-qiang, et al. Coulomb stress evolution and seismic hazards along the Qilian-Haiyuan fault zone[J]. Acta Seismologica Sinica, 2022, 44(2): 223-236 (in Chinese). [15] 李长军, 郝明, 李煜航, 等. 2022年1月8日MS6.9青海门源地震震前三维地壳变形与应变分配[J]. 地球物理学报, 2023, 66(2): 576-588. LI Chang-jun, HAO Ming, LI Yu-hang, et al. Three-dimensional crustal deformation and strain partitioning before the MS6.9 Qinghai Menyuan earthquake on January 8, 2022[J]. Chinese Journal of Geophysics, 2023, 66(2): 576-588 (in Chinese). [16] 赵静, 牛安福, 李强, 等. 陕西块体周边断层闭锁程度与滑动亏损特征研究[J]. 地震研究, 2016, 39(3): 351-358. ZHAO Jing, NIU An-fu, LI Qiang, et al. Study on dynamic characteristics of fault locking and fault slip deficit in the faults around the Longxi Block[J]. Journal of Seismological Research, 2016, 39(3): 351-358 (in Chinese). [17] 石富强, 邵志刚, 占伟, 等. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报, 2018, 61(9): 3651-3663. SHI Fu-qiang, SHAO Zhi-gang, ZHAN Wei, et al. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2018, 61(9): 3651-3663 (in Chinese). [18] Ohtake M, Matumoto T, Latham G V. Seismicity gap near Oaxaca, southern Mexico as a probable precursor to a large earthquake[J]. Pure and Applied Geophysics, 1977, 115(1): 375-385. [19] Wyss M, Habermann R E. Precursory seismic quiescence[J]. Pure and Applied Geophysics, 1988, 126(2): 319-332. [20] Huang Q H, Sobolev G A, Nagao T. Characteristics of the seismic quiescence and activation patterns before the M=7.2 Kobe earthquake, January 17, 1995[J]. Tectonophysics, 2001, 337(1-2): 99-116. [21] 戴志阳, 陈宇卫, 傅容珊, 等. 前兆性地震平静研究[J]. 地球物理学进展, 2006, 21(1): 18-24. DAI Zhi-yang, CHEN Yu-wei, FU Rong-shan, et al. The study of precursory seismic quiescence[J]. Progress in Geophysics, 2006, 21(1): 18-24 (in Chinese). [22] Kawamura M, Wu Y H, Kudo T, et al. Precursory migration of anomalous seismic activity revealed by the pattern informatics method: A case study of the 2011 Tohoku earthquake, Japan[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1171-1180. [23]Sukrungsri S, Pailoplee S. Precursory seismic quiescence along the Sumatra-Andaman subduction zone: Past and present[J]. Journal of Seismology, 2017, 21: 305-315. [24] 李文君, 曾宪伟, 罗国富, 等. 2016年1月21日青海门源MS6.4地震的前兆异常研究[J]. 地震地磁观测与研究, 2021, 42(5): 68-75. LI Wen-jun, ZENG Xian-wei, LUO Guo-fu, et al. Retrospective analysis of the Menyuan MS6.4 earthquake on January 21, 2016[J]. Seismological and Geomagnetic Observation and Research, 2021, 42(5): 68-75 (in Chinese). [25] 苏有锦, 刘杰. 2008年汶川8.0级地震前川滇地区6级以上地震平静异常[J]. 地震研究, 2010, 33(2): 119-124. SU You-jin, LIU Jie. Quiescence anomalies of M≥6.0 earthquakes before the 2008 Wenchuan (M8.0) earthquake in Sichuan-Yunnan region[J]. Journal of Seismological Research, 2010, 33(2): 119-124 (in Chinese). [26] 陈星星. 湖北巴东M5.1地震前兆探讨[D]. 武汉: 中国地震局地震研究所, 2015. CHEN Xing-xing. Searching for Badong M5.1 earthquake precursors[D]. Wuhan: Institute of Seismology, China Earthquake Administration, 2015 (in Chinese). [27] Mogi K. Some features of recent seismic activity in and near Japan (2): Activity before and after great earthquakes[J]. Bulletin of the Earthquake Research Institute, 1969, 47(3): 395-417. [28] 沈繁銮, 符干, 袁锡文, 等. 华南中强震前区域地震活动增强平静特征[J]. 华南地震, 2003, 23(3): 11-15. SHEN Fan-luan, FU Gan, YUAN Xi-wen, et al. The characteristics of regional seismic activity enhancement and quiet before the moderate-strong earthquake in South China Area[J]. South China Journal of Seismology, 2003, 23(3): 11-15 (in Chinese). [29] Holliday J R, Rundle J B, Tiampo K F, et al. Systematic procedural and sensitivity analysis of the pattern informatics method for forecasting large (M>5) earthquake events in southern California[J]. Pure and Applied Geophysics, 2006, 163(11-12): 2433-2454. [30] Cao Z Y, Wang Y X, Zhang H, et al. Study on spatio-temporal characteristics of earthquakes in southwest China based on z-value[J]. Open Geosciences, 2022, 14(1): 185-207. [31] 蒋长胜. 川滇地区地震活动的统计物理特征[J]. 国际地震动态, 2010(2): 44-45. JIANG Chang-sheng. Characteristics of statistical physics of the seismic activity in Sichuan-Yunnan region[J]. Recent Developments in World Seismology, 2010(2): 44-45 (in Chinese). [32] 冯建刚, 周龙泉, 杨立明, 等. 青藏块体东北缘中强地震前小震频度异常研究[J]. 地震, 2009, 29(3): 19-26. FENG Jian-gang, ZHOU Long-quan, YANG Li-ming, et al. Anomaly of small earthquake activities before medium to strong earthquakes in the northeast margin of the Qinghai-Tibet Block[J]. Earthquake, 2009, 29(3): 19-26 (in Chinese). [33] Holliday J R, Nanjo K Z, Tiampo K F, et al. Earthquake forecasting and its verification[J]. Nonlinear Processes in Geophysics, 2005, 12(6): 965-977. [34] Ogata Y, Imoto M, Katsura K. 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto district, Japan[J]. Geophysical Journal International, 1991, 104(1): 135-146. [35] Huang Q H. Search for reliable precursors: A case study of the seismic quiescence of the 2000 western Tottori prefecture earthquake[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B4): B04301. [36] 张晓东. 中国大陆强震的成组活动特征及发生机制研究[D]. 北京: 中国地震局地球物理研究所, 2004. ZHANG Xiao-dong. Study on activity and mechanism of group strong earthquake in China Mainland[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2004 (in Chinese). [37] 孟令媛, 解孟雨, 臧阳. 2022年门源MS6.9和2016年门源MS6.4地震序列比较分析[J]. 中国地震, 2022, 38(1): 1-11. MENG Ling-yuan, XIE Meng-yu, ZANG Yang. Comparison of aftershock sequences between the 2022 Menyuan MS6.9 earthquake and the 2016 Menyuan MS6.4 earthquake in the Lenglongling fault zone[J]. Earthquake Research in China, 2022, 38(1): 1-11 (in Chinese). [38] Nanjo K Z, Holliday J R, Chen C C, et al. Application of a modified pattern informatics method to forecasting the locations of future large earthquakes in the central Japan[J]. Tectonophysics, 2006, 424(3-4): 351-366. [39] 张小涛, 张永仙, 夏彩韵, 等. 利用图像信息方法研究芦山MS7.0地震前川滇及附近地区的图像异常[J]. 地震学报, 2014, 36(5): 780-789. ZHANG Xiao-tao, ZHANG Yong-xian, XIA Cai-yun, et al. Anomalous seismic activities in the Sichuan-Yunnan region and its adjacent areas before the Lushan MS7.0 earthquake by the pattern informatics method[J]. Acta Seismologica Sinica, 2014, 36(5): 780-789 (in Chinese). [40] Brodsky E E. The importance of studying small earthquakes[J]. Science, 2019, 364(6442): 736-737. [41] 刘桂平, 李闽峰, 李圣强, 等. 利用并行计算方法实现地震活动速率变化参数Z值的空间扫描处理及其计算效能评价[J]. 地震, 2009, 29 (4): 131-138. LIU Gui-ping, LI Min-feng, LI Sheng-qiang, et al. Application of parallel computing to spatial scanning of seismicity rate changes (Z-value) and its efficiency evaluation[J]. Earthquake, 2009, 29(4): 131-138 (in Chinese). [42]Wyss M, Wiemer S. Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake[J]. Science, 2000, 290(5495): 1334-1338. [43] Wu Y M, Chiao L Y. Seismic quiescence before the 1999 Chi-Chi, Taiwan, Mw7.6 earthquake[J]. Bulletin of the Seismological Society of America, 2006, 96(1): 321-327. [44] Pailoplee S, Panyatip S, Charusiri P. Precursory seismicity rate changes prior to the large and major earthquakes along the Sagaing fault zone, Central Myanmar[J]. Arabian Journal of Geosciences, 2017, 10(444): 1-10. [45] 张琳琳, 唐兰兰. 新疆及周边5次MS7.0以上地震对天山地区小震活动的影响[J]. 地震, 2018, 38(4): 159-171. ZHANG Lin-lin, TANG Lan-lan. Influence of five MS7.0 earthquakes on small earthquake activities in Xinjiang and its surrounding areas[J]. Earthquake, 2018, 38(4): 159-171 (in Chinese). [46] Habermann R E. Seismicity rate variations and systematic changes in magnitudes in teleseismic catalogs[J]. Tectonophysics, 1991, 193(4): 277-289. [47] Habermann R E. Precursory seismic quiescence: Past, present and future[J]. Pure and Applied Geophysics, 1988, 126: 279-318. [48] Wiemer S. A software package to analyze seismicity: ZMAP[J]. Seismological Research Letters, 2001, 72(3): 373-382. [49] Gardner J K, Knopoff L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 1974, 64(5): 1363-1367. [50] Zhang Y X, Zhang X T, Wu Y J, et al. Retrospective study on the predictability of pattern informatics to the Wenchuan M8.0 and Yutian M7.3 earthquakes[J]. Pure and Applied Geophysics, 2013, 170(1-2): 197-208. [51] Kawamura M, Wu Y H, Kudo T, et al. A statistical feature of anomalous seismic activity prior to large shallow earthquakes in Japan revealed by the pattern informatics method[J]. Natural Hazards and Earth System Sciences, 2014, 14(4): 849-859. [52] Zhang S F, Wu Z L, Jiang C S. The central China north-south seismic belt: Seismicity, ergodicity, and five-year PI forecast in testing[J]. Pure and Applied Geophysics, 2016, 173(1): 245-254. [53] Radan M Y, Hamzehloo H, Peresan A, et al. Assessing performances of pattern informatics method: A retrospective analysis for Iran and Italy[J]. Natural Hazards, 2013, 68(2): 855-881. [54] Chen C C, Wu Y X. An improved region-time-length algorithm applied to the 1999 Chi-Chi, Taiwan earthquake[J]. Geophysical Journal International, 2006, 166(3): 1144-1147. [55] 蒋长胜, 吴忠良, 马宏生, 等. PI算法用于川滇—安达曼—苏门答腊地区7.0级以上强震危险性预测的回溯性检验[J]. 地震学报, 2009, 31(3): 307-318. JIANG Chang-sheng, WU Zhong-liang, MA Hong-sheng, et al. Sichuan-Yunnan versus Andaman-Sumatra: PI approach and retrospective forecast test[J]. Acta Seismologica Sinica, 2009, 31(3): 307-318 (in Chinese). [56] Mohanty W K, Mohapatra A K, Verma A K, et al. Earthquake forecasting and its verification in northeast India[J]. Geomatics, Natural Hazards and Risk, 2016, 7(1): 194-214. [57] 宋程, 张永仙, 周少辉, 等. 2021年玛多MS7.4地震的PI热点特征回溯性预测研究[J]. 地震研究, 2023, 46(2) : 226-236. SONG Cheng, ZHANG Yong-xian, ZHOU Shao-hui, et al. Retrospective study on the forecast of the 2021 Maduo MS7.4 earthquake by PI method[J]. Journal of Seismological Research, 2023, 46(2): 226-236 (in Chinese). [58] 夏彩韵, 张永仙, 张小涛, 等. 利用两次新疆于田MS7.3地震对图像信息方法可预测性的检验[J]. 地震学报, 2015, 37(2): 312-322. XIA Cai-yun, ZHANG Yong-xian, ZHANG Xiao-tao, et al. Predictability test for pattern information method by two MS7.3 Yutian, Xinjiang, earthquakes[J]. Acta Seismologica Sinica, 2015, 37(2): 312-322 (in Chinese). [59] 蒋卉, 吴忠良, 马腾飞, 等. 对图像信息学(PI)算法的一个回溯性预测检验: 四川芦山7.0级地震[J]. 物理, 2013, 42(5): 334-340. JIANG Hui, WU Zhong-liang, MA Teng-fei, et al. Retrospective test of the PI forecast: Case study of the April 20, 2013, Lushan, Sichuan, China, MS7.0 earthquake[J]. Physics, 2013, 42(5): 334-340 (in Chinese). [60] 尼鲁帕尔·买买吐孙, 余怀忠. 利用图像信息方法研究库车MS5.6、 于田MS6.4地震前异常演化[J]. 内陆地震, 2020, 34(3) : 215-222. Nilupaer Maimaitusun, YU Huai-zhong. Anomalous evolution before Kuche MS5.6 and Yutian MS6.4 earthquake by pattern informatics method[J]. Inland Earthquake, 2020, 34(3): 215-222 (in Chinese). [61] Moore E F. Machines models of self-reproduction[J]. Mathematical Problems in the Biological Sciences, 1962, 14: 17-33. [62] 宋程, 张永仙, 夏彩韵, 等. 日本东北MW9.0地震的PI模型参数设置与预测效能回溯性检验[J]. 地震学报, 2018, 40(4): 491-505. SONG Cheng, ZHANG Yong-xian, XIA Cai-yun, et al. Retrospective test on the forecasting efficacy of PI models with different parameters for the Tohoku-Oki MW9.0 earthquake[J]. Acta Seismologica Sinica, 2018, 40(4): 491-505 (in Chinese). [63] 李莹, 田建慧, 李心怡, 等. 2022年9月5日四川泸定MS6.8地震深部构造特征[J]. 地球物理学报, 2023, 66(4): 1385-1396. LI Ying, TIAN Jian-hui, LI Xin-yi, et al. Deep tectonic pattern of the Luding MS6.8 earthquake on 5th September 2022 in Sichuan Province, China[J]. Chinese Journal of Geophysics, 2023, 66(4): 1385-1396 (in Chinese). [64]McCaffrey R. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B7): B07401. [65] Li Y H, Liu M, Wang Q L, et al. Present-day crustal deformation and strain transfer in northeastern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2018, 487: 179-189. [66] Zheng W J, Zhang P Z, He W G, et al. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 2013, 584: 267-280. [67] 潘家伟, 李海兵, Marie-Luce Chevalier, 等. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231. PAN Jia-wei, LI Hai-bing, Marie-Luce Chevalier, et al. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231 (in Chinese). |
| [1] | YAN Kun, WANG Wei-jun, KOU Hua-dong, YE Zhi-peng. The Aftershock Evolution and Earthquake Triggering of the 2022 Menyuan MS6.9 Earthquake [J]. EARTHQUAKE, 2023, 43(1): 15-32. |
| [2] | LI Rui-sha, ZHANG Xi, JIA Peng, BAI Zhuo-li. The Ratio of Cross-fault Anomalous Site in the Northeastern Margin of Qinghai-Tibet Block and Application in the Earthquake Prediction [J]. EARTHQUAKE, 2020, 40(2): 71-81. |
| [3] | ZHANG Lin-lin, TANG Lan-lan. Influence of Five MS7.0 earthquakes on Small Earthquake Activities in Xinjiang and its Surrounding Areas [J]. EARTHQUAKE, 2018, 38(4): 159-171. |
| [4] | SONG Cheng,ZHANG Yong-xian,XIA Cai-yun,WU Yong-jia. Retrospective Forecasting Study of the Tohoku MW9.0 Earthquake by Pattern Informatics Method [J]. EARTHQUAKE, 2017, 37(2): 47-56. |
| [5] | LIU Qi, ZHANG Jing, MA Zhen. Anomaly Characteristics of 4-component Borehole StrainAnalyzed Jointly with Borehole Water Level and GPS Data before the 2016 Menyuan MS6.4 Earthquake [J]. EARTHQUAKE, 2016, 36(3): 76-86. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||