[1] 柳存喜, 王志. 南阿拉斯加地壳及上地幔结构成像研究[J]. 地球物理学报, 2014, 57(7): 2113-2126. LIU Cun-xi, WANG Zhi. Structure imaging of the crust and upper mantle in south of Alaska[J]. Chinese Journal of Geophysics, 2014, 57(7): 2113-2126 (in Chinese). [2] 罗亦泳, 吴大卫, 张立亭. 阿拉斯加2021年8.2级地震同震电离层扰动特征及对比分析[J]. 地球物理学报, 2024, 67(2): 461-476. LUO Yi-yong, WU Da-wei, ZHANG Li-ting. Analysis of coseismic ionospheric disturbances after Alaska MW8.2 earthquake on July 29, 2021[J]. Chinese Journal of Geophysics, 2024, 67(2): 461-476 (in Chinese). [3] Suito H, Freymueller J T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B11): B11404. [4] 邓文泽, 孙丽. 2021年美国阿拉斯加半岛MW8.2地震震源特征分析[J]. 中国地震, 2021, 37(3): 737-744. DENG Wen-ze, SUN Li. The source characteristics of the 2021 Alaska MW8.2 earthquake[J]. Earthquake Research in China, 2021, 37(3): 737-744 (in Chinese). [5] DeMets C, Gordon R G, Argus D F. Geologically current plate motions[J]. Geophysical Journal International, 2010, 181(1): 1-80. [6] 吴石军. 2021年阿拉斯加MW8.2地震震源破裂过程反演[J]. 大地测量与地球动力学, 2023, 43(1): 34-37. WU Shi-jun. Inversion of the rupture process of the 2021 Alaska MW8.2 earthquake[J]. Journal of Geodesy and Geodynamics, 2023, 43(1): 34-37 (in Chinese). [7] 徐志国, 张怀, 周元泽, 等. 2018年12月1日美国阿拉斯加MW7.0地震震源参数及破裂过程[J]. 地震地质, 2019, 41(5): 1223-1238. XU Zhi-guo, ZHANG Huai, ZHOU Yuan-ze, et al. The source parameters and rupture process of the MW7.0 earthquake in Alaska, USA, on December 1, 2018[J]. Seismology and Geology, 2019, 41(5): 1223-1238 (in Chinese). [8] Elliott J L, Larsen C F, Freymueller J T, et al. Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9): B09407. [9] Leonard L J, Hyndman R D, Mazzotti S, et al. Current deformation in the northern Canadian Cordillera inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B11): B11401. [10] 周云, 李予青, 王卫民, 等. 2020年阿拉斯加MW7.8地震震源特征及邻区地震危险性分析[J]. 地球物理学报, 2021, 64(2): 498-506. ZHOU Yun, LI Yu-qing, WANG Wei-min, et al. Source characteristics of the 2020 Alaska MW7.8 earthquake and seismic risk analysis of adjacent areas[J]. Chinese Journal of Geophysics, 2021, 64(2): 498-506 (in Chinese). [11] Finzel E S, Trop J M, Ridgway K D, et al. Upper plate proxies for flat-slab subduction processes in southern Alaska[J]. Earth and Planetary Science Letters, 2011, 303(3-4): 348-360. [12] He Y H, LÜ Y. Anisotropic Pn tomography of Alaska and adjacent regions[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2021JB022220. [13] Worthington L L, Van Avendonk H J A, Gulick S P S, et al. Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1): B01102. [14] Eberhart-Phillips D, Christensen D H, Brocher T M, et al. Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B11): B11303. [15] 郑永飞, 陈伊翔, 陈仁旭, 等. 汇聚板块边缘构造演化及其地质效应[J]. 中国科学: 地球科学, 2022, 52(7): 1213-1242. ZHENG Yong-fei, CHEN Yi-xiang, CHEN Ren-xu, et al. Tectonic evolution of convergent plate margins and its geological effects[J]. Science China Earth Sciences, 2022, 52(7): 1213-1242 (in Chinese). [16] 李万财, 倪怀玮. 俯冲带脱水作用与板片流体地球化学[J]. 中国科学: 地球科学, 2020, 50(12): 1770-1784. LI Wan-cai, NI Huai-wei. Dehydration at subduction zones and the geochemistry of slab fluids[J]. Science China Earth Sciences, 2020, 50(12): 1770-1784 (in Chinese). [17] Kim Y, Abers G A, Li J, et al. Alaska megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1924-1941. [18] Hayes G P, Moore G L, Portner D E, et al. Slab2, a comprehensive subduction zone geometry model[J]. Science, 2018, 362(6410): 58-61. [19] Wang Y, Tape C. Seismic velocity structure and anisotropy of the Alaska subduction zone based on surface wave tomography[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(12): 8845-8865. [20] Martin-Short R, Allen R, Bastow I D, et al. Seismic imaging of the Alaska subduction zone: Implications for slab geometry and volcanism[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(11): 4541-4560. [21] Tong P, Yang D H, Huang X Y. Multiple-grid model parametrization for seismic tomography with application to the San Jacinto fault zone[J]. Geophysical Journal International, 2019, 218(1): 200-223. [22] Tong P, Yang D H, Li D Z, et al. Time-evolving seismic tomography: The method and its application to the 1989 Loma Prieta and 2014 South Napa earthquake area, California[J]. Geophysical Research Letters, 2017, 44(7): 3165-3175. [23] Hassouna M S, Farag A A. Multi-stencils fast marching methods: A highly accurate solution to the eikonal equation on cartesian domains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1563-1574. [24] Liu Y S, Suardi I, Huang X Y, et al. Seismic velocity and anisotropy tomography of southern Sumatra[J]. Physics of the Earth and Planetary Interiors, 2021, 316(23): 106722. [25] Tong P, Zhao D, Yang D, et al. Wave-equation-based travel-time seismic tomography-Part 2: Application to the 1992 Landers earthquake (MW7.3) area[J]. Solid Earth, 2014, 5(2): 1169-1188. [26] Huang X Y, Yang D H, Tong P, et al. Wave equation-based reflection tomography of the 1992 Landers earthquake area[J]. Geophysical Research Letters, 2016, 43(5): 1884-1892. [27] Huang X Y, Yang D H, Tong P, et al. Quasi-waveform seismic tomography of crustal structures in the capital circle region of China[J]. Science China Earth Sciences, 2021, 64(1): 110-126. [28] 杨唯佳, 周艳杰, 姜恩元, 等. 2019年长宁MS6.0地震周边区域速度与P波各向异性成像研究[J]. 地震, 2023, 43(4): 1-20. YANG Wei-jia, ZHOU Yan-jie, JIANG En-yuan, et al. Tomographic study on the velocity structures and P-wave azimuthal anisotropy of the 2019 Changning MS6.0 earthquake surrounding area[J]. Earthquake, 2023, 43(4): 1-20 (in Chinese). [29] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0—A 1-degree global model of Earth’s crust[R]. EGU General Assembly, 2013, 15: 2658. [30] 张雅楠. 基于程函方程的地震层析成像方法及应用[D]. 北京: 北京工商大学, 2021. ZHANG Ya-nan. Eikonal equation-based seismic tomography method and its application[D]. Beijing: Beijing Technology and Business University, 2021 (in Chinese). [31] Christeson G L, Gulick S P S, van Avendonk H J A, et al. The Yakutat terrane: Dramatic change in crustal thickness across the Transition fault, Alaska[J]. Geology, 2010, 38(10): 895-898. [32] 周建波. 增生杂岩: 从大洋俯冲到大陆深俯冲的地质记录[J]. 中国科学: 地球科学, 2020, 50(12): 1709-1726. ZHOU Jian-bo. Accretionary complex: Geological records from oceanic subduction to continental deep subduction[J]. Science China Earth Sciences, 2020, 50(12): 1709-1726 (in Chinese). [33] Li J Y, Abers G A, Kim Y, et al. Alaska megathrust 1: Seismicity 43 years after the great 1964 Alaska megathrust earthquake[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(9): 4861-4871. |