[1] Shen Z K, Min W, Li Y, et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS[J]. Journal of Geophysical Research Solid Earth, 2001, 106(B12): 30607-30621. [2] Wright T J, Parsons B, Philip C, et al. InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet[J]. Science, 2004, 305(5681): 236-239. [3] Li T, Chen J, Fang L H, et al. The 2015 MW6.4 Pishan earthquake: Seismic hazards of an active blind wedge thrust system at the Western Kunlun Range Front, Northwest Tibetan Plateau[J]. Seismol. Res. Lett, 2016, 87(3): 601-608. [4] 吴传勇, 李金, 刘建明, 等. 新疆皮山MS6.5地震发生在西昆仑山前的一次褶皱地震[J]. 地震地质, 2017, 39(2): 342-355. WU Chuan-yong, LI Jin, LIU Jian-ming, et al. Pishan MS6.5 Earthquake of Xinjiang: A fold earthquake event in the west Kunlun piedmont[J]. Seismology and Geology, 2017, 39(2): 342-355 (in Chinese). [5] He P, Wang Q, Ding K H, et al. Coseismic and postseismic slip ruptures for 2015 MW6.4 Pishan earthquake constrained by static GPS solutions[J]. Geodesy and Geodynamics, 2016a, 7(5): 323-328. [6] He P, Wang Q, Ding K, et al. Source model of the 2015 MW6.4 Pishan earthquake constrained by interferometric synthetic aperture radar and GPS: Insight into blind rupture in the western Kunlun Shan[J]. Geophysical Research Letters, 2016b, 43(4): 1511-1519. [7] 陈云锅, 何平, 丁开华, 等. 联合地震波和大地测量数据反演2015年皮山MS6.4地震的同震破裂分布[J]. 地震地质, 2019, 41(1): 137-149. CHEN Yun-guo, HE Ping, DING Kai-hua, et al. Geodetic and teleseismic constraints on slip distribution of 2015 MW6.4 Pishan earthquake[J]. Seismology and Geology, 2019, 41(1): 137-149 (in Chinese). [8] 李金, 王琼, 吴传勇, 等. 2015年7月3日皮山6.5级地震发震构造初步研究[J]. 地球物理学报, 2016, 59(8): 2859-2870. LI Jin, WANG Qiong, WU Chuan-yong, et al. Preliminary study for seismogenic structure of the Pishan MS6.5 Earthquake of July 3, 2015[J]. Chinese J. Geophys, 2016, 59(8): 2859-2870 (in Chinese). [9] 张广伟, 张洪艳, 孙长青, 等. 2015年新疆皮山地震MS6.5地震震源机制及余震序列定位[J]. 地震地质, 2016, 38(3): 711-720. ZHANG Guang-wei, ZHANG Hong-yan, SUN Chang-qing, et al. Mechanism of the 2015 Pishan, Xingjiang, MS6.5 mainshock and relocation of its aftershock sequences[J]. Seismology and Geology, 2016, 38(3): 711-720 (in Chinese). [10] Zhang G H, Shan X J, Zhang Y F, et al. Blind thrust rupture of the 2015 MW6.4 Pishan earthquake in the Northwest Tibetan Plateau by joint inversion of InSAR and seismic data[J]. Journal of Asian Earth Sciences, 2016, 132(2016): 118-128. [11] Wen Y M, Xu C J, et al. Deformation and Source Parameters of the 2015 MW6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data[J]. Remote Sensing, 2016, 8(2): 134-147. [12] Li Y S, Luo Y, Zhang J F, et al. The 2015 MW6.4 Pishan earthquake, China: geodetic modelling inferred from Sentinel-1A TOPS interferometry[J]. Survey Review, 2017. [13] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wan-peng, LI Zhen-hong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196 (in Chinese). [14] Parsons B, Wright T J, Rowe P, et al. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophysical Journal International, 2006, 164: 202-217. [15] Wang R J. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry.∥EGU General Assembly Conference Abstracts, 2013. [16] 李永生, 冯万鹏, 张景发, 等. 2014年美国加州纳帕MW6.1地震断层参数的Sentinel-1A InSAR反演[J]. 地球物理学报, 2015, 58(7): 2339-2349. LI Yong-sheng, FENG Wan-peng, ZHANG Jing-fa, et al. Coseismic slip of the 2014 MW6.1 Napa, California Earthquake revealed by Sentinel-1A InSAR[J]. Chinese J. Geophys, 2015, 58(7): 2339-2349 (in Chinese). [17] Chen C W, Zebker H A. Phase unwrapping for large SAR interferograms: Statistical segmentation and Generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. [18] Chen Y, Penna N T, Li Z H. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122, 2008-2025. [19] 冯万鹏, 许力生, 李振洪. 2008年10月当雄MW6.3级地震断层参数的InSAR反演及其构造意义[J]. 地球物理学报, 2010, 53(5): 1134-1142. FENG Wan-peng, XU Li-sheng, LI Zhen-hong. Fault parameters of the October 2008 Damxung MW6.3 earthquake from InSAR inversion and its tectonic implication[J]. Chinese J. Geophys, 2010, 53(5): 1134-1142 (in Chinese). [20] Feng W P, Li Z H, Elliott J R, et al. The 2011 MW6.8 Burma earthquake: fault constraints provided by multiple SAR techniques[J]. Geophysical Journal International, 2013, 195(1): 650-660. [21] Jónsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 MW7.2 Hector Mine earthquake, California, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389. [22] Sun J B, Shen Z K, Li T, et al. Thrust faulting and 3D ground deformation of the 3 July 2015 MW6.4 Pishan, China Earthquake from Sentinel-1 A radar interferometry[J]. Tectonophysics, 2016, 683: 77-85. [23] Diao F Q, Xiong X, Wang R J, et al. Overlapping post-seismic deformation processes: Afterslip and viscoelastic relaxation following the 2011 MW9.0 tohoku (Japan) earthquake[J]. Geophysical Journal International, 2014, 196(1): 218-229. [24] Li D B, Stephen H, et al. ‘Two go together’: Near-simultaneous moment release of two asperities during the 2016 MW6.6 Muji, China earthquake[J]. Earth and Planetary Science Letters, 2018, 491: 34-42. [25] Hong S Y, Zhou X, Zhang K, et al. Source Model and Stress Disturbance of the 2017 Jiuzhaigou MW6.5 Earthquake Constrained by InSAR and GPS Measurements[J]. Remote Sensing, 2018, 10(9). [26] 靳志同, 万永革, 黄骥超, 等. 2015年新疆皮山MW6.4地震对周围地区的静态应力影响[J]. 地震地质, 2017, 39(5): 1017-1029. JIN Zhi-tong, WAN Yong-ge, HUANG Ji-chao, et al. The static stress triggering influences of the 2015 MW6.4 Pishan, Xinjiang earthquake on the neighboring areas[J]. Seismology and Geology, 2017, 39(5): 1017-1029 (in Chinese). [27] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. [28] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征. 中国科学(D辑), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. Basic characteristics of active tectonics of China[J]. Science in China (Ser D), 2002, 46(4): 356-372 (in Chinese). [29] Wang R J, Martín F L, Roth F. PSGRN/PSCMP-a new code for calculation co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541. [30] Laske G, Masters G, Ma Z, Pasyanos M. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust.∥EGU General Assembly 2013. Vienna, Austria. [31] Harris R A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B10): 24347-24358. [32] Freed A M. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth & Planetary Sciences, 2005, 33(1): 335-367. |