EARTHQUAKE ›› 2020, Vol. 40 ›› Issue (2): 177-187.doi: 10.12196/j.issn.1000-3274.2020.02.014
YANG Xiao-lin1,2, WEI Zi-gen1, YANG Jin-ling3
Received:
2019-08-14
Online:
2020-04-30
Published:
2020-04-24
CLC Number:
YANG Xiao-lin, WEI Zi-gen, YANG Jin-ling. A Diagnostic Study of Annual Strain Variations in Vault-housed Extensometers at the Geodynamic Observatory Qianling, Shaanxi Province[J]. EARTHQUAKE, 2020, 40(2): 177-187.
[1] Takemoto S. Some problems on detection of earthquake precursors by means of continuous monitoring of crustal strains and tilts[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B6): 10377-10390. [2] Stolz A, Larden D R. Seasonal displacement and deformation of the earth by the atmosphere[J]. Journal of Geophysical Research, 1979, 84(B11): 6185-6194. [3] Beauducel F, Cornet F H. Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano, Java[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B1): 725-736. [4] Dong D, Fang P, Bock Y, et al. Anatomy of apparent seasonal variations from GPS-derived site position time series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): ETG9-1~ETG9-16. [5] 寺石眞弘, 大谷文夫, 竹内文朗, 等. 地殻変動連続観測における季節変化[R]. 京都大学防災研究所年報, 2009, 52(B): 285-291. Teraishi M, Onoue K, Ohya F, et al. Seasonal variations in the continuous observations of the crustal movement[R]. Disaster Prevention Research Institute Annuals, Kyoto University, 2009, 52(B): 285-291 (in Japanese). [6] 刘冠中, 马瑾, 杨永林, 等. 川西地区长周期气温变化对跨断层位移观测的影响及芦山地震前的异常断层活动[J]. 地球物理学报, 2014, 57(7): 2150-2164. LIU Guan-zhong, MA Jin, YANG Yong-lin, et al. Effect of long-term surface temperature variation on fault displacement observation and anomalous fault movement in Western Sichuan before the Lushan MS7.0 earthquake[J]. Chinese Journal of Geophysics, 2014, 57(7): 2150-2164 (in Chinese). [7] Amoruso A, Crescentini L, Chiaraluce L. Surface temperature and precipitation affecting GPS signals before the 2009 L’Aquila earthquake(Central Italy)[J]. Geophysical Journal International, 2017, 210(2): 911-918. [8] Larochelle S, Gualandi A, Chanard K, et al. Identification and extraction of seasonal geodetic signals due to surface load variations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(12): 11031-11047. [9] Johnson C W, Fu Y, Bürgmann R. Stress models of the annual hydrospheric, atmospheric, thermal, and tidal loading cycles on California faults: perturbation of background stress and changes in seismicity[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10605-10625. [10] Kreemer C, Zaliapin I. Spatiotemporal correlation between seasonal variations in seismicity and horizontal dilatational strain in California[J]. Geophysical Research Letters, 2018, 45(8): 9559-9568. [11] Harrison J C. Cavity and topographic effects in tilt and strain measurement[J]. Journal of Geophysical Research, 1976, 81(2): 319-328. [12] Harrison J C, Herbst K. Thermoelastic strains and tilts revisited[J]. Geophysical Research Letters, 1977, 4(11): 535-537. [13] Kostecky P, Kohút I. Modelling of the rock structure stress field near the cavities and estimation of the cavity effect influence on the tidal measurements[J]. Mathematics and Computers in Simulation, 1999, 50(1-4): 205-214. [14] 柳沢道夫. 鋸山地殻変動観測所における坑内温度の年変化の計測[J]. 測地学会誌, 1973, 19(4): 225-232. Yanagisawa M. Measurement of annual variation of temperature in the tunnel at Nokogiriyama crustal movement observatory[J]. Journal of the Geodetic Society of Japan, 1973, 19(4): 225-232 (in Japanese). [15] Berger J. A note on thermoelastic strains and tilts[J]. Journal of Geophysical Research, 1975, 80(2): 274-277. [16] Hvodara M, Brimich L, Skalsky L. Thermo-elastic deformations due to the annual temperature variation at the tidal station in Vyhne[J]. Studia Geophysica et Geodaetica, 1988, 32(2): 129-135. [17] Watanabe K. Strain variations of the Yamasaki fault zone, Southwest Japan, derived from extensometer observations, part 1, on the long-term strain variations derived from strain steps[R]. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1991, 41(354): 29-52. [18] Prawirodirdjo L, Ben-Zion Y, Bock Y. Observation and modeling of thermoelastic strain in Southern California Integrated GPS Network daily position time series[J]. Journal of Geophysical Research, 2006, 111, B02408: 1-10. [19] Yamazaki K. An attempt to correct strain data measured with vault-housed extensometers under variations in temperature[J]. Tectonophysics, 2013, 599: 89-96. [20] Xu X, Dong D, Fang M, et al. Contributions of thermoelastic deformation to seasonal variations in GPS station position[J]. GPS Solutions, 2017, 21(3): 1265-1274. [21] 曹建玲, 石耀霖. 地表温度年变化对地应力和地倾斜的影响[J]. 中国科学院研究生院学报, 2005, 22(3): 303-308. CAO Jian-ling, SHI Yao-lin. Stress and tilt induced by annual variation of surface temperature[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2005, 22(3): 303-308 (in Chinese). [22] 孙玉军, 李杰, 曹建玲, 等. 深部洞室中微小温度年度变化足以造成地应变年度变化[J]. 地震学报, 2008, 30(5): 464-473. SUN Yu-jun, LI Jie, CAO Jian-ling, et al. Small variation of annual temperature in deep tunnel can produce annual variation in tilt and strain[J]. Acta Seismologica Sinica, 2008, 30(5): 464-473 (in Chinese). [23] 杨少华, 任天翔, 董培育, 等. 姑咱台钻孔应变观测值年变化的数值模拟解释[J]. 地震地质, 2016, 38(4): 1137-1147. YANG Shao-hua, REN Tian-xiang, DONG Pei-yu, et al. Interpretation of borehole strain annual change at Guzan station by numerical simulation[J]. Seismology and Geology, 2016, 38(4): 1137-1147 (in Chinese). [24] Mentes G. Observation of recent tectonic movements by extensometers in the Pannonian Basin[J]. Journal of Geodynamics, 2008, 45(4-5): 169-177. [25] Brimich L, Bednárik M, Bezák V, et al. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station, Slovakia[J]. Contributions to Geophysics and Geodesy, 2016, 46(2): 75-90. [26] 李新男. 鄂尔多斯西南缘活动构造几何图像、 运动特征及构造变形模式[D]. 北京: 中国地震局地质研究所, 2019, 12-19. LI Xin-nan. Deformation pattern based on geometry and kinematics of active tectonics in the Southwestern Ordos Block[D]. Beijing: Institute of Geology, China Earthquake Administration, 2019, 12-19 (in Chinese). [27] 俱战省, 刘文兆, 郑粉莉, 等. 陕西省乾县地下水位动态变化特征分析[J]. 水土保持通报, 2012, 32(2): 178-181. JU Zhan-sheng, LIU Wen-zhao, ZHENG Fen-li, et al. Groundwater table dynamics in Qianxian county of Shaanxi Province[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 178-181 (in Chinese). [28] Wang T F, Brace W F. Thermal expansion of rocks: some measurements at high pressure[J]. Tectonophysics, 1979, 57(2-4): 95-117. [29] Cooper H, Simmons G. The effect of cracks on the thermal expansion of rocks[J]. Earth and Planetary Science Letters, 1977, 36(3): 404-412. [30] 张慧. 地温变化过程及其机理研究[D]. 北京: 中国科学院大学, 2017, 82-94. ZHANG Hui. The research of the characteristic and mechanism of soil temperature change in China[D]. Beijing: University of Chinese Academy of Sciences, 2017, 82-94 (in Chinese). [31] 施婷婷, 郑兴波, 张丽波, 等. 植被对土壤热扩散特征的影响: 以长白山阔叶红松林为例[J]. 生态学报, 2015, 35(12): 3970-3978. SHI Ting-ting, ZHENG Xing-bo, ZHANG Li-bo, et al. The influence of vegetation on soil thermal properties: a case study of broadleaved Korean pine forest in Changbai Mountain[J]. Acta Ecologica Sinica, 2015, 35(12): 3970-3978 (in Chinese). [32] 缪育聪, 刘树华, 吕世华, 等. 土壤热扩散率及其温度、 热通量计算方法的比较研究[J]. 地球物理学报, 2012, 55(2): 441-451. MIAO Yu-cong, LIU Shu-hua, LV Shi-hua, et al. A comparative study of computing methods of soil thermal diffusivity, temperature and heat flux[J]. Chinese Journal of Geophysics, 2012, 55(2): 441-451 (in Chinese). [33] 廖要明, 陈德亮, 刘秋锋. 中国各地气温差时空分布及变化趋势[J]. 气候变化研究进展, 2019, 15(4): 374-384. LIAO Yao-ming, CHEN De-liang, LIU Qiu-feng. The spatiotemporal characteristics and long-term trends of surface-air temperatures difference in China [J]. Climate Change Research, 2019, 15(4): 374-384 (in Chinese). |
[1] | GUAN Zhao-xuan, WAN Yong-ge, ZHOU Ming-yue, WANG Run-yan, SONG Ze-yao, HUANG Shao-hua, GU Pei-yuan. Seismogenic Fault Plane and Geodynamic Discussion of the 2024 Wushi MS7.1 Earthquake, Xinjiang, China [J]. EARTHQUAKE, 2024, 44(2): 1-11. |
[2] | LI Yue, LIU Zhen-hui, MA Han-yu, WANG Yi-xi, SHAO Yong-xin. Permeability Changes of Tianjin Typical Observation Wells and Coseismic Response Mechanism to Maduo MS7.4 Earthquake [J]. EARTHQUAKE, 2024, 44(2): 33-51. |
[3] | JING Tao, Boonphor Phetphouthongdy, Chansouk Sioudom, LIU Yang-yang, LI Ji-geng, KANG Chun-li, MA Wei-yu. Analysis of Outgoing Longwave Radiation Changes before and after the Dengta MS5.1 Earthquake Based on Tidal Additional Tectonic Stress [J]. EARTHQUAKE, 2024, 44(2): 52-62. |
[4] | YANG Yan-ming, SU Shu-juan, WANG Lei. Determination of Rupture Direction and Seismogenic Structure of the 2020 Heerlinger ML4.5 Earthquake in Hohhot, Inner Mongolia [J]. EARTHQUAKE, 2024, 44(2): 63-85. |
[5] | WANG Ting-ting, BIAN Yin-ju, REN Meng-yi, YANG Qian-li, HOU Xiao-lin. Seismic Event Recognition Software [J]. EARTHQUAKE, 2024, 44(2): 104-119. |
[6] | SONG Cheng, ZHANG Yong-xian, XIA Cai-yun, BI Jin-meng, ZHANG Xiao-tao, WU Yong-jia, XU Xiao-yuan. Retrospective Study on the Forecasting of the Three MS≥5.0 Earthquakes Since 2019 in North China Based on PI Method [J]. EARTHQUAKE, 2024, 44(2): 120-134. |
[7] | LIU Jun-qing, ZHANG Xiao-gang, ZHANG Yu, CAI Hong-lei, CHEN Zhuo, BAO Xiu-min. Study of Seismic Moment Tensor Inversion by Multi-point Sources for Jishishan MS6.2 Earthquake on December 18, 2023, in Gansu Province, China [J]. EARTHQUAKE, 2024, 44(2): 169-177. |
[8] | HUANG Feng, XIONG Ren-wei, LIN Jing-dong, ZHAO Zheng, YANG Pan-xin. Geomorphic Index and Activity Characteristics of the Mid-Segment of Jiali Fault [J]. EARTHQUAKE, 2024, 44(1): 1-18. |
[9] | SHU Tian-tian, LUO Yan, ZHU Yin-jie. The Source Rupture Process and the Strong Ground Motion Estimation of the 2022 MS6.8 Earthquake in Luding, Sichuan [J]. EARTHQUAKE, 2024, 44(1): 19-36. |
[10] | WU Xu, XUE Bing, LI Jiang, ZHU Xiao-yi, ZHANG Bing, HUANG Shi. Design and Implementation of Borehole Comprehensive Observation Timing System [J]. EARTHQUAKE, 2024, 44(1): 37-49. |
[11] | BO Wan-ju, ZHANG Li-cheng, SU Guo-ying, XU Dong-zhuo, ZHAO Li-jun. Thoughts on Monitoring and Forecasting Methods of Strong Earthquake with Crust Deformation Data [J]. EARTHQUAKE, 2024, 44(1): 64-77. |
[12] | YUE Xiao-yuan, LI Yan-e, ZHONG Shi-jun, WANG Wei, WANG Yan, MA Liang. Anormalies of b-value Changes before M≥4.0 Earthquake in Tangshan Old Seismic Region [J]. EARTHQUAKE, 2024, 44(1): 94-108. |
[13] | JIA Xin-ye, BAI Shao-qi, JIA Yan-jie, LIU Fang, NA Re. Study on Lg Wave Attenuation and Site Response Characteristics in Central and Western of Inner Mongolia, China [J]. EARTHQUAKE, 2024, 44(1): 109-117. |
[14] | CHEN Guang-qi, WU Yan-qiang, XIA Ming-yao, LI Zhi-yuan. The Japan Noto Peninsula M7.6 Earthquake on January 1, 2024: Focal Characteristics, Disaster Situation and Emergency Response [J]. EARTHQUAKE, 2024, 44(1): 141-152. |
[15] | YANG Pan-xin, XIONG Ren-wei, HU Chao-zhong, GAO Yuan. Preliminary Analysis of the Seismogenic Tectonics for the 2023 Jishishan MS6.2 Earthquake in Gansu Province [J]. EARTHQUAKE, 2024, 44(1): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||