[1] 陈棋福. 汶川地震引发的中国地震预报探讨[J]. 第四纪研究, 2010, 30(4): 721-735. CHEN Qi-fu. A discussions about the earthquake prediction in China after the 2008 Wenchuan earthquake[J]. Quaternary Sciences, 2010, 30(4): 721-735 (in Chinese). [2] Wang K, Chen Q F, Sun S, et al. Predicting the 1975 Haicheng earthquake[J]. Bulletin of the Seismological Society of America, 2006, 96(3): 757-795. [3] National Research Council. Predicting earthquakes: A scientific and technical evaluation, with implications for society[M]. National Academies, 1976. [4] 张肇诚, 张炜. 地震预报可行性的科学与实践问题讨论[J]. 地震学报, 2016, 38(4): 564-579. ZHANG Zhao-cheng, ZHANG Wei. Discussion on scientific and practical problems of feasibility of earthquake prediction[J]. Acta Seismologica Sinica, 2016, 38(4): 564-579 (in Chinese). [5] 李世煇. 地震预测预报能与不能的争论[J]. 太原师范学院学报(社会科学版), 2012, 11(2): 1-9. LI Shi-hui. Dispute on capability and incapability for earthquake prediction and forecast[J]. Journal of Taiyuan Normal University (Social Science Edition), 2012, 11(2): 1-9 (in Chinese). [6] Geller R J, Jackson D D, Kagan Y Y, et al. Earthquakes cannot be predicted[J]. Science, 1997, 275(5306): 1616. [7] 吴忠良, 蒋长胜. 地震前兆检验的地球动力学问题对地震预测问题争论的评述(之三)[J]. 中国地震, 2006, 22(3): 236-241. WU Zhong-liang, JIANG Chang-sheng. Performance evaluation and statistical test of candidate earthquake precursors: Revisit in the perspective of geodynamicsCritical review on the recent earthquake prediction debate[J]. Earthquake Research In China, 2006, 22(3): 236-241 (in Chinese). [8] Wyss M. Evaluation of proposed earthquake precursors[J]. Eos Transactions American Geophysical Union, 1991, 72(38): 411. [9] Wyss M, Dmowska R. Earthquake prediction-state of the art[J]. Pure and Applied Geophysics, 1997, 149(1). [10] Wyss M. Second round of evaluations of proposed earthquake precursors[J]. Pure and Applied Geophysics, 1997, 149(1): 3-16. [11] Trugman D T, Ross Z E. Pervasive foreshock activity across southern California[J]. Geophysical Research Letters, 2019, 46(15): 8772-8781. [12] Michie D, Spiegelhalter D J, Taylor C. Machine learning[J]. Neural and Statistical Classification, 1994, 13(1994): 1-298. [13] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [14] Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural networks, 2015, 61: 85-117. [15] Dramsch J S. Machine learning in 4D seismic data analysis: Deep neural networks in geophysics[D]. Technical University of Denmark, 2019. [16] Alarifi A S N, Alarifi N S N, Al-Humidan S. Earthquakes magnitude predication using artificial neural network in northern Red Sea area[J]. Journal of King Saud University- Science, 2012, 24(4): 301-313. [17] Panakkat A, Adeli H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators[J]. International Journal of Neural Systems, 2007, 17(1): 13-33. [18] Adeli H, Panakkat A. A probabilistic neural network for earthquake magnitude prediction[J]. Neural Networks, 2009, 22(7): 1018-1024. [19] Asim K M, Adnan I, Talat I, et al. Earthquake prediction model using support vector regressor and hybrid neural networks[J]. Plos One, 2018, 13(7): e0199004. [20] Asencio-Cortés G, Morales-Esteban A, Shang X, et al. Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure[J]. Computers and Geosciences, 2018, 115: 198-210. [21] Rouet-Leduc B, Hulbert C, Lubbers N, et al. Machine learning predicts laboratory earthquakes[J]. Geophysical Research Letters, 2017, 44(18): 9276-9282. [22] Ren C X, Peltier A Ferrazzini V, et al. Machine learning reveals the seismic signature of eruptive behavior at piton de la fournaise volcano[J]. Geophysical Research Letters, 2020, 47(3): e2019GL085523. [23] 马士振, 刘宏志, 牟磊育. 在地脉动数据上应用分类算法的地震预测实验[J]. 地震, 2020, 40(1): 159-171. MA Shi-zhen, LIU Hong-zhi, MU Lei-yu. Earthquake forecast experiment with classification algorithm based on microtremor date[J]. Earthquake, 2020, 40(1): 159-171 (in Chinese). [24] Corbi F, Sandri L, Bedford J, et al. Machine learning can predict the timing and size of analog earthquakes[J]. Geophysical Research Letters, 2019, 46(3): 1303-1311. [25] Nicolis O, Plaza F, Salas R. Prediction of intensity and location of seismic events using deep learning[J]. Spatial Statistics, 2020, 100442. [26] DeVries P M R, Viégas F, Wattenberg M, et al. Deep learning of aftershock patterns following large earthquakes[J]. Nature, 2018, 560(7720): 632-634. [27] Mignan A, Broccardo M. Neural network applications in earthquake prediction (1994—2019): Meta-analytic and statistical insights on their limitations[J]. Seismological Research Letters, 2020, 91(4): 2330-2342. [28] Molchan G M, Dmitrieva O E. Aftershock identification: Methods and new approaches[J]. Geophysical Journal International, 1992, 109(3): 501-516. [29] King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953. [30] Alves E I. Earthquake forecasting using neural networks: Results and future work[J]. Nonlinear Dynamics, 2006, 44(1-4): 341-349. [31] Gutenberg B. Elementary seismology[J]. Engineering and Science, 1958, 22(2): 10-10. [32] Moustra M, Avraamides M, Christodoulou C. Artificial neural networks for earthquake prediction using time series magnitude data or Seismic Electric Signals[J]. Expert Systems with Applications, 2011, 38(12): 15032-15039. [33] Asencio-Cortés G, Scitovski S, Scitovski R, et al. Temporal analysis of croatian seismogenic zones to improve earthquake magnitude prediction[J]. Earth Science Informatics, 2017, 10(3): 303-320. [34] Asencio-Cortés G, Martínez-álvarez F, Troncoso A, et al. Medium-large earthquake magnitude prediction in Tokyo with artificial neural networks[J]. Neural Computing and Applications, 2017, 28(5): 1043-1055. [35] Li R, Lu X B, Li S W, et al. DLEP: A deep learning model for earthquake prediction[C]. 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. [36] Reyes J, Morales-Esteban A, Martínez-álvarez F. Neural networks to predict earthquakes in Chile[J]. Applied Soft Computing Journal, 2013, 13(2): 1314-1328. [37] Asim K M, Martínez-álvarez F, Basit A, et al. Earthquake magnitude prediction in Hindukush region using machine learning techniques[J]. Natural Hazards, 2017, 85(1): 471-486. [38] Asim K M, Idris A, Iqbal T, et al. Seismic indicators based earthquake predictor system using Genetic Programming and AdaBoost classification[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 1-7. [39] Asim K M, Moustafa S S, Niaz I A, et al. Seismicity analysis and machine learning models for short-term low magnitude seismic activity predictions in Cyprus[J]. Soil Dynamics and Earthquake Engineering, 2020, 130: 105932. [40] Huang J P, Wang X A, Zhao Y, et al. Large earthquake magnitude prediction in Taiwan based on deep learning neural network[J]. Neural Network World, 2018, 28(2): 149-160. [41] Plaza F, Salas R, Nicolis O. Assessing seismic hazard in chile using deep neural networks[M]∥Natural Hazards-Risk, Exposure, Response, and Resilience. IntechOpen, 2019. [42] Rundle J B, Donnellan A. Nowcasting earthquakes in southern california with machine learning: Bursts, swarms, and aftershocks may be related to levels of regional tectonic stress[J]. Earth and Space Science, 2020, 7(9): e2020EA001097. [43] Mignan A, Broccardo M. A Deeper Look into “deep learning of aftershock patterns following large earthquakes”: Illustrating first principles in neural network physical interpretability[C]. International Work-Conference on Artificial Neural Networks. Springer, Cham, 2019: 3-14. [44] Rouet-Leduc B , Hulbert C, Bolton D C, et al. Estimating fault friction from seismic signals in the laboratory[J]. Geophysical Research Letters, 2018, 45(3): 1321-1329. [45] Rouet-Leduc B, Hulbert C, McBrearty I W, et al. Probing slow earthquakes with deep learning[J]. Geophysical Research Letters, 2020, 47(4): e2019GL085870. [46] Rouet-Leduc B, Hulbert C, Johnson P A. Continuous chatter of the Cascadia subduction zone revealed by machine learning[J]. Nature Geoscience, 2019, 12(1): 75-79. [47] Corbi F, Bedford J, Sandri L, et al. Predicting imminence of analog megathrust earthquakes with Machine Learning: Implications for monitoring subduction zones[J]. Geophysical Research Letters, 2020, 47(7): e2019GL086615. [48] Hulbert C, Rouet-Leduc B, Johnson P A, et al. Similarity of fast and slow earthquakes illuminated by machine learning[J]. Nature Geoscience, 2019, 12(1): 69-74. [49] Ren C X, Dorostkar O, Rouet-Leduc B, et al. Machine learning reveals the state of intermittent frictional dynamics in a sheared granular fault[J]. Geophysical Research Letters, 2019, 46(13): 7395-7403. [50] Biswas S, Castellanos D F, Zaiser M. Prediction of creep failure time using machine learning[J]. arXiv preprint arXiv: 2005.03514, 2020. |