[1] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [2] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. [3] 武长得, 朱红, 邓宗策, 等. 雅鲁藏布江断裂带的构造特征[J]. 中国地质科学院院报, 1990, 11(2): 87-94. WU Chang-de, ZHU Hong, DENG Zong-ce, et al. The structural characteristics of Yarlung Zangbo fracture zone[J]. Bulletin of the Chinese Academy of Geological Sciences, 1990, 11(2): 87-94 (in Chinese). [4] 李培, 秦四清, 薛雷, 等. 2015年4月25日尼泊尔MW7.8地震孕育过程分析与震后趋势研判[J]. 地球物理学报, 2015, 58(5): 1827-1833. LI Pei, QIN Si-qing. XUE Lei, et al. On the seismogenic process of the 25 April 2015 MW7.8 earthquake and future earthquake situation[J]. Chinese Journal of Geophysics, 2015, 58(5): 1827-1833 (in Chinese). [5] 熊维, 谭凯, 刘刚, 等. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、 震后应力影响[J]. 地球物理学报, 2015, 58(11): 4305-4316. XIONG Wei, TAN Kai, LIU Gang, et al. Coseismic and postseismic coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(11): 4305-4316 (in Chinese). [6] 张贝, 程惠红, 石耀霖. 2015年4月25日尼泊尔MS8.1大地震的同震效应[J]. 地球物理学报, 2015, 58(5): 1794-1803. ZHANG Bei, CHENG Hui-hong, SHI Yao-lin. Calculation of the co-seismic effect of MS8.1 earthquake, April 25, 2015, Nepal[J]. Chinese Journal of Geophysics, 2015, 58(5): 1794-1803 (in Chinese). [7] 刘静, 纪晨, 张金玉, 等. 2015年4月25日尼泊尔MW7.8级地震的孕震构造背景和特征[J]. 科学通报, 2015, 60(27): 2640-2655. LIU Jing, JI Chen, ZHANG Jin-yu, et al. Tectonic setting and general features of coseismic rupture of the 25 April, 2015 MW7.8 Gorkha, Nepal earthquake[J]. Chinese Science Bulletin, 2015, 60(27): 2640-2655 (in Chinese). [8] 单新建, 屈春燕, 龚文瑜, 等. 2017年8月8日四川九寨沟7.0级地震InSAR同震形变场及断层滑动分布反演[J]. 地球物理学报, 2017, 60(12): 4527-4536. SHAN Xin-jian, QU Chun-yan, GONG Wen-yu, et al. Coseismic deformation field of the Jiuzhaigou MS7.0 earthquake from Sentinel-1A InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4527-4536 (in Chinese). [9] 黄星, 洪顺英, 金红林, 等. 2015年新疆皮山MW6.4地震发震断层和滑动分布反演[J]. 地震, 2020, 40(1): 84-98. HUANG Xing, HONG Shun-ying, JIN Hong-lin, et al. Inversion of the seismogenic fault and fault slip distribution of the 2015 Pishan MW6.4 earthquake[J]. Earthquake, 2020, 40(1): 84-98 (in Chinese). [10] 宋瑞庆, 孟国杰, 张奎, 等. 2016年新疆阿克陶地震Sentinel-1 InSAR同震形变特征[J]. 地震, 2018, 38(1): 17-25. SONG Rui-qing, MENG Guo-jie, ZHANG Kui, et al. InSAR co-seismic deformation characteristics of the 2016 Aketao earthquake using Sentinel-1 Data[J]. Earthquake, 2018, 38(1): 17-25 (in Chinese). [11] 纪润池, 申旭辉, 张景发, 等. 中小地震三维形变场重构方法研究与同震滑动分布反演以2016年5月22日定日MW5.3地震为例[J]. 地震, 2019, 39(4): 84-97. JI Run-chi, SHEN Xu-hui, ZHANG Jing-fa, et al. Research on reconstruction method of three-dimensional deformation field for small and medium earthquakes and inversion of co-seismic slip distributionA case study of May 22 2016 MW5.3 Dingri earthquake[J]. Earthquake, 2019, 39(1): 84-97 (in Chinese). [12] Sandwell D, Mellors R, Tong X P, et al. Open radar interferometry software for mapping surface deformation[C]. Eos Transactions American Geophysical Union, 92(28). [13] Sandwell D, Mellors R, Tong X P, et al. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools[C]. UC San Diego: Scripps Institution of Oceanography. [14] Farr T G, Kobrick M. Shuttle radar topography mission produces a wealth of data[C]. Eos Transactions American Geophysical Union, 81(48). [15] Chen C W, Zebker H A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. [16] Chen Y, Penna N T, Li Z H, et al. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 2008-2025. [17] Sudaus H, Sigurjon J. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: Application to the June 2000 Kleifarvatn earthquake[J]. Geophysical Journal International, 2009, 176(2): 389-404. [18] Bagnardi M, Hooper, A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A Bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211. [19] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154. [20] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学报, 2010, 25(4): 1189-1196. FENG Wan-peng, LI Zhen-hong. A novel hybrid PSO/simplex algorithm for detecting earthquake source parameters using InSAR data[J]. Chinese Journal of Geophysics, 2010, 25(4): 1189-1196 (in Chinese). [21] Feng W P, Li Z H, Elliott J, et al. The 2011 MW6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques[J]. Geophysical Journal International, 2013, 195(1): 650-660. [22] Wang Y Z, Feng W P, Chen K, et al. Source characteristics of the 28 September 2018 MW7.4 Palu, Indonesia, earthquake derived from the advanced land observation satellite 2 data[J]. Remote Sensing, 2019, 11(17): 1-16. [23] Hong S Y, Zhou X, Zhang K, et al. Source model and stress disturbance of the 2017 Jiuzhaigou MW6.5 earthquake constrained by InSAR and GPS measurements[J]. Remote Sensing, 2018, 10(9): 1-19. [24] Wright T J, Lu Z, Wicks C. Constraining the slip distribution and fault geometry of the MW7.9, 3 November 2002, Denali fault earthquake with interferometric synthetic aperture radar and global positioning system data[J]. Bulletin of the Seismological Society of America, 2004, 94(6B): S175-S189. [25] Fialko, Y. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 MW7.3 Landers (southern California) earthquake[J]. Journal of Geophysical Research: Solid Earth, 2004, 109: B03307. [26] 徐锡伟, 韩竹军, 杨晓平, 等. 中国及邻近地区地震构造图[M]. 北京: 地震出版社, 2016. XU Xi-wei, HAN Zhu-jun, YANG Xiao-ping, et al. Seismotectonic map in China and its adjacent regions[M]. Beijing: Seismological Press, 2016 (in Chinese). [27] 张进江, 郭磊, 丁林. 申扎—定结正断层体系中、 南段构造特征及其与藏南拆离系的关系[J]. 科学通报, 2002, 47(10): 738-743. ZHANG Jin-jiang, GUO Lei, DING Lin. Structural characteristics of middle and southern Xainza-Dingye normal fault system and its relationship to Southern Tibetan detachment system[J]. Chinese Science Bulletin, 2002, 47(10): 738-743 (in Chinese). [28] 朱志澄, 宋鸿林. 构造地质学[M]. 武汉: 中国地质大学出版社, 1999. ZHU Zhi-cheng, SONG Hong-lin. Tectonic geology[M]. Wuhan: China University of Geosciences Press, 1999 (in Chinese). [29] 师亚芹, 冯希杰, 戴王强, 等. 渭河断裂西安段的展布及其结构特征[J]. 地震学报, 2008, 30(6): 634-647. SHI Ya-qin, FENG Xi-jie, DAI Wang-qiang, et al. Distribution and structural characteristics of the Xi'an section of the Weihe fault[J]. Acta Seismologica Sinica, 2008, 30(6): 634-647 (in Chinese). |