[1] Li Y, Chen L, Liu S, Yang S, et al. Coseismic coulomb stress changes caused by the MW6.9 Yutian earthquake in 2014 and its correlation to the 2008 MW7.2 Yutian earthquake[J]. Journal of Asian Earth Sciences, 2015, 105: 468-475. [2] 王辉, 曹建玲, 洪顺英, 等. 2008年和2014年2次新疆于田M7地震之间的黏弹性应力转移[J]. 地震地质, 2016, 38(3): 646-659. WANG Hui, CAO Jian-ling, HONG Shun-ying, et al. Viscoelastic stress transfer between 2008 and 2014 Yutian M7 earthquakes, Xinjiang[J]. Seismology and Geology, 2016, 38(3): 646-659 (in Chinese). [3] 万永革, 沈正康, 盛书中, 等. 2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释[J]. 地球物理学报, 2010, 53(2): 280-289. WAN Yong-ge, SHEN Zheng-kang, SHENG Shu-zhong, et al. The mechanical effects of the 2008 MS7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism[J]. Chinese Journal of Geophysics, 2010, 53(2): 280-289 (in Chinese). [4] 宋金, 周龙泉. 2014年于田MS7.3地震产生的静态库仑应力变化及对周边断层的影响[J]. 中国地震, 2014, 30(2): 168-177. SONG Jin, ZHOU Long-quan. The static stress triggering effects related with the Yutian MS7.3 earthquake[J]. Earthquake in China, 2014, 30(2): 168-177 (in Chinese). [5] 周云, 王卫民, 熊林, 等. 2014年2月12日MW6.9于田地震震源破裂过程及对周围断层的应力影响[J]. 地球物理学报, 2015, 58(1): 184-193. ZHOU Yun, WANG Wei-min, XIONG Lin, et al. Rupture process of 12 February 2014, Yutian MW6.9 earthquake and stress change on nearby faults[J]. Chinese Journal of Geophysics, 2015, 58(1): 184-193 (in Chinese). [6] 程惠红, 庞亚瑾, 董培育, 等. 于田2008年和2014年两次MS7.3地震孕育的应力环境[J]. 地球物理学报, 2014, 57(10): 3238-3246. Chen Hui-hong, PANG Ya-jin, DONG Pei-yu, et al. Analysis of the stress environment of the 2008 and 2014 Yutian MS7.3 earthquake[J]. Chinese Journal of Geophysics, 2014, 57(10): 3238-3246 (in Chinese). [7] 赵立波, 赵连锋, 谢小碧, 等. 2014年2月12日新疆于田MW7.0地震源区静态库仑应力变化和地震活动率[J]. 地球物理学报, 2016, 59(10): 3732-3743. ZHAO Li-bo, ZHAO Lian-feng, XIE Xiao-bi, et al. 2016. Static coulomb stress changes and seismicity rate in the source region of the 12 February, 2014 MW7.0 Yutian earthquake in Xinjiang, China[J]. Chinese Journal of Geophysics, 2016, 59(10): 3732-3743 (in Chinese). [8] Li X, Xu W, Jónsson S, et al. Source model of the 2014 MW6.9 Yutian earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet estimated from satellite images[J]. Seismological Research Letters. 2020, 91(6): 3161-3170. [9] 顾功叙, 林庭煌, 时振梁, 等. 中国地震目录(公元1970—1979年)[M]. 北京: 地震出版社, 1983. GU Gong-xu, LIN Ting-huang, SHI Zheng-liang et al. Chinese earthquake catalogue (1970—1979)[M]. Beijing: Seismological Press, 1983 (in Chinese). [10] 付碧宏, 张松林, 谢小平, 等. 阿尔金断裂系西段——康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 2006, 26(2): 228-235. FU Bi-hong, ZHANG Song-lin, XIE Xiao-ping, et al. Late quaternary tectono-geomorohic features along the Kangxiwar fault, Altyn Tagh fault system, northern Tibet[J]. Quaternary Sciences, 2006, 26(2): 228-235 (in Chinese). [11] Xu X W, Tan X B, Yu G H, et al. Normal- and oblique-slip of the 2008 Yutian earthquake: Evidence for eastward block motion, northern Tibetan Plateau[J]. Tectonophysics, 2013, 584: 152-165. [12] Li H B, Pan J W, Lin A M, et al. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh fault, Tibetan Plateau[J]. Bulletin of the Seismological Society of America, 2016, 106(2): 595-608. [13] Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J]. Bulletin of the Seismological Society of America, 1968, 58(1): 399-415. [14] Schorlemmer D, Wiemer S, Wyss M. Variations in earthquake-size distribution across different stress regimes[J]. Nature, 2005, 437: 539-542. [15] Amitrano D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2044. [16] Wiemer S, Schorlemmer D. ALM: An asperity-based likelihood model for California[J]. Seismological Research Letters, 2007, 78(1): 134-140. [17] Gulia L, Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks[J]. Nature, 2019, 574: 193-199. [18] 李文倩, 何金刚, 刘平仁, 等. 新疆地震观测台网建设[J]. 地震地磁观测与研究, 2019, 40(3): 79-86. LI Wen-qian, HE Jin-gang, LIU Ping-ren, et al. The development of Xinjiang earthquake observation network [J]. Seismological and Geomagnetic Observation and Research, 2019, 40(3): 79-86 (in Chinese). [19] 徐伟进, 高孟潭. 中国大陆及周缘地震目录完整性统计分析[J]. 地球物理学报, 2014, 57(9): 2802-2812. XU Wei-jin, GAO Meng-tan. Statistical analysis of the completeness of earthquake catalogs in China mainland[J]. Chinese Journal of Geophysics, 2014, 57(9): 2802-2812 (in Chinese). [20] Mignan A, Jiang C, Zechar J D, et al. Completeness of the Mainland China earthquake catalog and implications for the setup of the China Earthquake Forecast Testing Center[J]. Bulletin of the Seismological Society of America, 2013, 103(2A): 845-859. [21] Zaliapin I, Ben-Zion Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(4): E17120. [22] Elliott J R, Walters R J, England P C, et al. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology[J]. Geophysical Journal International, 2010, 183(2): 503-535. [23] Cheng J, Rong Y F, Magistraile H, et al. Earthquake rupture scaling relations for mainland China[J]. Seismological Research Letters, 2020, 91(1): 248-261. [24] Freed A M. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 335-367. [25] Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6762): 605-609. [26] Wang R J, Lorenzo-Martin F, Roth F. PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers and Geosciences, 2006, 32(4): 527-541. [27] Ryder I, Parsons B, Wright T J, et al. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling[J]. Geophysical Journal International, 2007, 169(3): 1009-1027. [28] Zhang C J, Cao J L, Shi Y L. Studying the viscosity of lower crust of Qinghai-Tibet Plateau according to post-seismic deformation[J]. Science in China (Serial D): Earth Sciences, 2009, 52(3): 411-419. [29] 孙玉军, 董树文, 范桃园, 等. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报, 2013, 56(9): 2936-2946. SUN Yu-jun, DONG Shu-wen, FAN Tao-yuan, et al. 3D rheological structure of the continental lithosphere beneath China and adjacent regions[J]. Chinese Journal of Geophysics, 2013, 56(9): 2936-2946 (in Chinese). [30] Luo G, Liu M. Multi-timescale mechanical coupling between the San Jacinto Fault and the San Andreas Fault, southern California[J]. Lithosphere, 2012, 4(3): 221-229. [31] Gardner J K, Knopoff L. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 1974, 64(5): 1363-1367. [32] Ogata Y. Space-time Point-process models for earthquake occurrences[J]. Annals of the Institute of Statistical Mathematics, 1998, 50(2): 379-402. [33] 王辉, 曹建玲, 申旭辉. 华北地区的背景地震活动及区域未来强震危险性[J]. 地震, 2011, 31(2): 11-23. WANG Hui, CAO Jian-lin, SHEN Xu-hui. Background seismicity and its application to seismic hazard assessment in the North China region[J]. Earthquake, 2011, 31(2): 11-23 (in Chinese). [34] 王辉, 曹建玲, 荆燕, 等. 川滇地区强震活动前b值的时空分布特征[J]. 地震地质, 2012, 34(3): 531-543. WANG Hui, CAO Jian-ling, JIN Yan, et al. Spatiotemporal pattern of b-value before major earthquakes in the Sichuan-Yunnan region[J]. Seismology and Geology, 2012, 34(3): 531-543 (in Chinese). [35] 贾科, 周仕勇. 基于库仑应力改变和地震活动性研究巴颜喀拉块体周缘强震序列的触发关系及其构造意义[J]. 地震学报, 2018, 40(3): 291-303. JIA Ke, ZHOU Shi-yong. Triggering relationship in strong earthquake sequence around the Bayan Har block and its tectonic significance based on Coulomb stress changes and seismicity [J]. Acta Seismologica Sinica, 2018, 40(3): 291-303 (in Chinese). [36] Mogi K. Study of elastic shocks causd by the fracture of hetrogeneous materials and its relations to earthquake phenomena. Bulletin of the Earthquake Research Institute, 1962. 40: 125-173. [37] Zhao J M, Zhao D P, Zhang H, et al. P-wave tomography and dynamics of the crust and upper mantle beneath western Tibet[J]. Gondwana Research, 2014, 25(4): 1690-1699. [38] 马宏生, 张国民, 刘杰, 等. 中国大陆活动地块边界带强震活动特征的研究[J]. 地震地质, 2006, 28(1): 48-60. MA Hong-sheng, ZHANG Guo-min, LIU Jie, et al. Research on the characteristics of large earthquake activity on the active tectonic boundaries in Chinese mainland[J]. Seismology and Geology, 2006, 28(1): 48-60 (in Chinese). [39] Wang H, Liu M, Cao J, et al. Slip rates and seismic moment deficits on major active faults in mainland China[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B2): B02405. [40] Zhang H, Ge Z X. Stepover rupture of the 2014 MW7.0 Yutian, Xingjiang, earthquake[J]. Bulletin of the Seismological Society of America, 2017, 107(2): 581-591. |