[1] 徐锡伟, 谭锡斌, 吴国栋, 等. 2008年于田MS7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 2011, 33(2): 462-471. XU Xi-wei, TAN Xi-bin, WU Guo-dong, et al. Surface rupture features of the 2006 Yutian MS7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 2011, 33(2): 462-471 (in Chinese). [2] 邢喜民, 夏爱国, 高丽娟. 2012年8月12日于田MS6.2地震序列特征及前兆异常[J]. 内陆地震, 2014, 28(3): 240-246. XING Xi-min, XIA Ai-guo, GAO Li-juan. The sequence characteristics and precursory anomalies of the Yutian MS6.2 earthquake on August 12, 2012[J]. Inland Earthquake, 2014, 28(3): 240-246 (in Chinese). [3] 陈亚男, 蒋海昆. 基于粘弹库仑应力变化的后续最大地震震级估计及2008、 2014年于田2次7.3级地震之间关系的讨论[J]. 中国地震, 2015, 31(1): 11-26. CHEN Ya-nan, JIANG Hai-kun. Estimation of the follow-up maximum earthquake magnitude based on the change of viscoelastic coulomb stress and discussion of the relationship between the two Yutian MS7.3 earthquakes in 2008 and 2014[J]. Earthquake Research in China, 2015, 31(1): 11-26 (in Chinese). [4] 程佳, 刘杰, 盛书中, 等. 2014年新疆于田MW7.3强震构造背景及其与2008年MW7.3地震之间的关系讨论[J]. 中国地震, 2014, 30(2): 143-150。 CHENG Jia, LIU Jie, SHENG Shu-zhong, et al. Tectonic background of the Yutian MW7.3 earthquake and its relationship with the Yutian MW7.3 earthquake in 2008[J]. Earthquake Research in China, 2014, 30(2): 143-150 (in Chinese). [5] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zheng, RAN Yong-kang, et al. Basic characteristics of active tectonics in China[J]. Scientia Sinica (Series D), 2002, 32(12): 1020-1030 (in Chinese). [6] 徐岳仁, 陈立泽, 申旭辉, 等. 基于GF-1卫星影像解译2014年新疆于田MS7.3地震同震地表破裂带[J]. 地震, 2015, 35(2): 61-71. XU Yue-ren, CHEN Li-ze, SHEN Xu-hui, et al. Interpretating coseismic rupture zone of the 2014 Yutian MS7.3 earthquake using GF-1 satellite images[J]. Earthquake, 2015, 35(2): 61-71 (in Chinese). [7] 葛伟鹏, 袁道阳, 邵延秀, 等. 青藏高原西北部区域地壳形变、 构造地貌与孕震构造模型研究以2008年与2014年新疆于田7.3级地震为例[J]. 地震工程学报, 2015, 37(3): 710-723. GE Wei-peng, YUAN Dao-yang, SHAO Yan-xiu, et al. Regional crustal deformation, tectonic geomorphology and seismogenic tectonic model of the northwestern Tibetan Plateau: Case studies of the 2008 and 2014 Yutian (Xinjiang) MS7.3 earthquakes[J]. Chinese Journal of Earthquake Engineering, 2015, 37(3): 710-723 (in Chinese). [8] 宋金, 周龙泉. 2014年于田MS7.3地震产生的静态库仑应力变化及对周边断层的影响[J]. 中国地震, 2014, 30(2): 168-177. SONG Jin, ZHOU Long-quan. The static stress triggering effects related with the Yutian MS7.3 earthquake[J]. Earthquake Research in China, 2014, 30(2): 168-177. [9] Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[C]∥EUSAR 2012, 9th European Conference on Synthetic Aperture Radar. VDE [10] Fattahi H, Agram P, Simons M. A network-based enhanced spectral diversity approach for TOPS time-series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 777-786. [11] Gao Y, Wang K, Liu X. Exploitation of SRTM DEM in InSAR data processing and its application to phase unwrapping[J]. Journal of Electromagnetic Waves & Applications, 2012, 26(13):1788-1797. [12] Chen C W, Zebker H A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719. [13] Chen Y, Penna N T, Li Z H. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122: 2008-2025. [14] 冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1189-1196. FENG Wan-peng, LI Zhen-hong. A novel hybrid PSO/simplex algorithm for determining earthquake source parameters using InSAR data[J]. Progress in Geophysics, 2010, 25(4): 1189-1196 (in Chinese). [15] 李永生, 冯万鹏, 张景发, 等. 2014年美国加州纳帕MW6.1地震断层参数的Sentine-1A InSAR反演[J]. 地球物理学报, 2015, 58(7): 2339-2349. LI Yong-sheng, FENG Wan-peng , ZHANG Jing-fa , et al. Coseismic slip of the 2014 MW6.1 Napa, California Earthquake revealed by Sentinel-1A InSAR[J]. Chinese Journal of Geophysics, 2015, 58(7): 2339-2349 (in Chinese). [16] 黄星, 洪顺英, 金红林, 等. 2015年新疆皮山MW6.4地震发震断层和滑动分布反演[J]. 地震, 2020, 40(1): 84-98. HUAN Xing, HONG Shun-ying, JIN Hong-lin, et al. Inversion of seismogenic faults and slip distribution of the 2015 Pishan MW6.4 earthquake in Xinjiang[J]. Earthquake, 2020, 40(1): 84-98 (in Chinese). [17] Jonsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 MW7.2 Hector Mine earthquake, California, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389. [18] 洪顺英. 基于多视线向D-InSAR技术的三维同震形变场解算方法研究及应用[J]. 国际地震动态, 2012,(10): 45-48. HONG Shun-ying. Research and application of three-dimensional coseismic deformation field calculation method based on multi-line-of-sight D-InSAR technology[J]. Recent Developments in International Seismology, 2012, (10): 45-48 (in Chinese). [19] Hastings W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1): 97-109. [20] Bagnardi M, Hooper A. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A bayesian approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211. [21] Knospe S, Jónsson S. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2057-2065. [22] Lohman R B, Simons M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(1). [23] Sudhaus H, Jónsson S. Improved source modelling through combined use of InSAR and GPS under consideration of correlated data errors: Application to the June 2000 Kleifarvatn earthquake, Iceland[J]. Geophysical Journal International, 2009, 176(2): 389-404. [24] González P J, Fernández J. Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry[J]. Geology, 2011, 39(6): 551-554. [25] Wackernagel, H. Multivariate Geostatistics: An introduction with applications[M]. Springer Berlin Heidelberg, 1995, 35-40 [26] Okada Y. Surface deformation due to shear and tensile faults in a half-space: Okada, Y Bull Seismol Soc AmV75, N4, Aug 1985, P1135-1154[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1986, 23(4): 128. [27] Wen Y M, Xu C J, Liu Y, et al. Deformation and source parameters of the 2015 MW6.5 earthquake in Pishan, western China, from sentinel-1A and ALOS-2 data[J]. Remote Sensing, 2016, 8(2): 134. [28] Wang R J, Diao F Q, Hoechner A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. EGU General Assembly Conference Abstracts, 2013. [29] 冉慧敏, 上官文明, 赵晓成. 2020年新疆于田MS6.4地震及余震序列定位研究[J]. 内陆地震, 2020, 34(3): 249-257. RAN Hui-min, SHANGGUAN Wen-ming, ZHAO Xiao-cheng. Location study of Yutian MS6.4 earthquake and aftershocks sequence in 2020[J]. Inland Earthquake, 2020, 34(3): 249-257 (in Chinese). [30] Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP—a new code for calculation co-and post-seismic deformation, geoid and gravity changes based on the viscoelatic-gravitational dislocation theory[J]. Computers and Geosciences, 2006, 32(4): 527-541. [31] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree Global Model of Earth’s Crust. Geophys. Res. Abstracts, 2013, 15, Abstract EGU2013-2658. [32] 程惠红, 庞亚瑾, 董培育, 等. 2014. 于田2008年和2014年两次MS7.3地震孕育的应力环境[J]. 地球物理学报, 2014, 57(10): 3238-3246. CHENG Hui-hong, PANG Ya-jin, DONG Pei-yu, et al. Analysis of the stress environment of the 2008 and 2014 Yutian MS7.3 earthquake[J]. Chinese Journal of Geophysics, 2014, 57(10): 3238-3246 (in Chinese). [33] Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24347-24358. [34] Freed A M. Earthquake triggering by static, dynamic, and postseismic stress transfer[J]. Annual Review of Earth and Planetary Sciences, 2005, 33(1): 335-367. |