[1] Graham L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 2005, 62(6): 763-768. [2] 王勇, 杨军, 刘严萍, 等.融合DInSAR与精密水准测量的天津蓟州五名山滑坡体形变监测[J]. 灾害学, 2020, 35(4): 108-112. WANG Yong, YANG Jun, LIU Yan-ping, et al.Landslide monitoring of Wuming Mountain in Jizhou, Tianjin based on DInSAR and precise leveling[J]. Journal of Catastrophology, 2020, 35(4): 108-112 (in Chinese). [3] Lu Z, Wicks C W, Dzurisin D, et al.Magmatic inflation at a dormant stratovolcano: 1996—1998 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B7): 2143-2155. [4] Massonnet D, Rossi M, Carmona C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. [5] 季灵运, 刘传金, 徐晶, 等. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 2017, 60(10): 4069-4082. JI Ling-yun, LIU Chuan-jin, XU Jing, et al. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics, 2017, 60(10): 4069-4082 (in Chinese). [6] 邱江涛, 赵强, 林鹏. 2016年新疆阿克陶MS6.7地震InSAR同震形变与滑动分布特征[J]. 地震研究, 2018, 41(3): 415-422. Qiu Jiang-tao, Zhao Qiang, Lin Peng.Characteristics of InSAR coseismic deformation and slip distribution of the Akto MS6.7 earthquake, Xinjiang[J]. Journal of Seismological Research, 2017, 41(3): 415-422 (in Chinese). [7] Liu C J, Ji L Y, Zhu L Y, et al. InSAR-constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh Fault at 91.5°~95°E, Northern Tibetan Plateau[J]. Remote Sensing, 2018, 10(6): 943-962. [8] 洪顺英, 申旭辉, 单新建, 等. 基于D-InSAR技术的西藏改则地震同震形变场特征分析[J]. 地震, 2009, 29(4): 23-31. HONG Shun-ying, SHEN Xu-hui, SHAN Xin-jian, et al. Characteristics of coseismic deformation of the 2008 Gaize, Tibet earthquake based on D-InSAR technology[J]. Earthquake, 2009, 29(4): 23-31 (in Chinese). [9] Sreejith K M, Sunil P S, Agrawal R, et al. Audit of stored strain energy and extent of future earthquake rupture in central Himalaya[J]. Scientific Reports, 2018, 8(1): 16697. [10] Wang H, Wright T J, Biggs J. Interseismic slip rate of the northwestern Xianshuihe fault from InSAR data[J]. Geophysical Research Letters, 2009, 36(3): L03302. [11] 李永生, 冯万鹏, 张景发, 等. 2014年美国加州纳帕MW6.1地震断层参数的Sentinel-1A InSAR反演[J]. 地球物理学报, 2015, 58(7): 2339-2349. LI Yong-sheng, FENG Wan-peng, ZHANG Jing-fa, et al. Coseismic slip of the 2014 MW6.1 Napa, California earthquake revealed by Sentinel-1A InSAR[J]. Chinese Journal of Geophysics, 2015, 58(7): 2339-2349 (in Chinese). [12] 屈春燕, 左荣虎, 单新建, 等. 尼泊尔MW7.8地震InSAR同震形变场及断层滑动分布[J]. 地球物理学报, 2017, 60(1): 151-162. QU Chun-yan, ZUO Rong-hu, SHAN Xin-jian, et al. Coseismic deformation field of the Nepal MS8.1 earthquake from Sentinel-1A/InSAR data and fault slip inversion[J]. Chinese Journal of Geophysics, 2017, 60(1): 151-162 (in Chinese). [13] 李宁, 赵强, 李金. 基于InSAR形变观测反演2015年皮山MS6.5级地震滑动分布[J]. 地震, 2017, 37(2): 67-77. LI Ning, ZHAO Qiang, LI Jin. Source parameters and slip model of the 2015 Pishan MS6.5 earthquake estimated from InSAR data[J]. Earthquake, 2017, 37(2): 67-77 (in Chinese). [14] 刘传金, 邱江涛, 王金烁. 基于升降轨Sentinel-1 SAR影像研究精河MS6.6地震震源机制[J]. 大地测量与地球动力学, 2018, 38(11): 1111-1116. LIU Chuan-jin, QIU Jiang-tao, WANG Jin-shuo. The 2017 Jinghe MS6.6 earthquake inversion from ascending and descending Sentinel-1 observations[J]. Journal of Geodesy and Geodynamics, 2018, 38(11): 1111-1116 (in Chinese). [15] 丁国瑜. 阿尔金活断层的古地震与分段[J]. 第四纪研究, 1995, 15(2): 97-106. DING Guo-yu. Paleoearthquakes along the Altun active fault and its segmentation[J]. Quaternary Sciences 1995, 15(2): 97-106 (in Chinese). [16] 徐锡伟, 谭锡斌, 吴国栋, 等. 2008年于田MS7.3地震地表破裂带特征及其构造属性讨论[J]. 地震地质, 2011, 33(2): 462-471. XU Xi-wei, TAN Xi-bin, WU Guo-dong, et al. Surface rupture features of the 2008 Yutian MS7.3 earthquake and its tectonic nature[J]. Seismology and Geology, 2011, 33(2): 462-471 (in Chinese). [17] Li H, PAN J, Lin A, et al. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh Fault, Tibetan plateau[J]. Bulletin of the Seismological Society of America, 2016, 106(2): 595-608. [18] 邵延秀, 袁道阳, 刘静, 等. 阿尔金断裂中段南月牙山古地震地表破裂带及其构造意义[J]. 地震地质, 2020, 42(2): 435-454. SHAO Yan-xiu, YUAN Dao-yang, LIU Jing, et al. The paleoseismic surface rupture at south of central Altyn Tagh Fault and its tectonic implication[J]. Seismology and Geology, 2020, 42(2): 435-454 (in Chinese). [19] Washburn Z, Arrowsmith J R, Dupont-Nivet G, et al. Paleoseismology of the Xorxol segment of the central Altyn Tagh fault, Xinjiang, China[J]. Annals of Geophysics, 2003, 46(5): 1015-1034. [20] 徐锡伟, 于贵华, 陈桂华, 等. 青藏高原北部大型走滑断裂带近地表地质变形特征分析[J]. 地震地质, 2007, 29(2): 201-217. XU Xi-wei, YU Gui-hua, CHEN Gui-hua, et al. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan plateau[J]. Seismology and Geology, 2007, 29(2): 201-217 (in Chinese). [21] 袁兆德, 刘静, 周游, 等. 阿尔金断裂中段乌尊硝尔段古地震记录与级联破裂行为[J]. 中国科学: 地球科学, 2020, 50: 50-65. YUAN Zhao-de, LIU Jing, ZHOU You, et al. Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh fault and its implication for cascade rupture behavior[J]. Science China Earth Sciences, 2020, 50: 50-65 (in Chinese). [22] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. Characteristics of active tectonics of China[J]. Science in China(Ser D), 32(12): 1020-1030 (in Chinese). [23] Salvi S, Stramondo S, Funning G J, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012, 120: 164-174. [24] 季灵运, 许建东. 利用D-InSAR和AZO技术获取Bam地震同震三维形变场[J]. 大地测量与地球动力学, 2009, 29(6): 40-44. JI Ling-yun, XU Jian-dong. Acquiring 3D coseismic deformation field of Bam earthquake by using D-InSAR and AZO techniques[J]. Journal of Geodesy and Geodynamics, 2009, 29(6): 40-44 (in Chinese). [25] Marco B, Andrew H. Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: A bayesian approach[J]. Geochemistry Geophysics Geosystems, 2018, 19(7): 2194-2211. [26] Wang R J, Diao F Q, Hoechner A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. EGU General Assembly Conference, 2013. [27] Xu C J, Liu Y, Wen Y M, et al. Coseismic slip distribution of 2008 MW7.9 Wenchuan earthquake from joint inversion of GPS and InSAR data[J]. Bulletin of the Seismological Society of America, 2010, 100(5B): 2736-2749. [28] 洪顺英, 刘智荣, 申旭辉, 等. 多视线向InSAR形变场约束的改则地震活动分布反演[J]. 遥感学报, 2015, 19(2) : 295-301. HONG Shun-ying, LIU Zhi-rong, SHEN Xu-hui, et al. Inversion for the slip distribution of the Gaize earthquake constrained by multiple line-of-sight InSAR deformation fields[J]. Journal of Remote Sensing, 2015, 19(2): 295-301 (in Chinese). [29] Wang R J, Parolai S, Ge M R, et al. The 2011 MW9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1336-1347. [30] 孙赫, 刘传金. 2018年云南墨江MS5.9地震的InSAR同震形变机制[J]. 地震研究, 2019, 42(3): 379-384. SUN He, LIU Chuan-jin. InSAR coseismic deformation mechanism of Yunnan Mojiang MS5.9 earthquake in 2018[J]. Journal of Seismological Research, 2019, 42(3): 379-384 (in Chinese). [31] Jonsson S, Zebker H, Segall P, et al. Fault slip distribution of the 1999 MW7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society America, 2002, 92(4): 1377-1389. [32] 赵强, 王双绪, 蒋锋云, 等. 利用InSAR技术研究2016年青海门源MW5.9地震同震形变场及断层滑动分布[J]. 地震, 2017, 37(2): 95-105. ZHAO Qiang, WANG Shuang-xu, JIANG Feng-yun, et al. Coseismic deformation field and fault slip distribution of the 2016 Qinghai Menyuan MW5.9 earthquake from InSAR measurement[J]. Earthquake, 2017, 37(2): 95-105 (in Chinese). |