EARTHQUAKE ›› 2021, Vol. 41 ›› Issue (2): 129-144.doi: 10.12196/j.issn.1000-3274.2021.02.010
Previous Articles Next Articles
JIANG Li1,2, CUI Yue-ju1, DU Jian-guo1,2, DING Zhi-hua3, LIU Yong-mei4, LIU Yi-nan5
Received:
2020-11-20
Revised:
2021-02-07
Online:
2021-04-30
Published:
2021-08-06
CLC Number:
JIANG Li, CUI Yue-ju, DU Jian-guo, DING Zhi-hua, LIU Yong-mei, LIU Yi-nan. Satellite Hyperspectral Remote Sensing Geochemical Anomalies Associated with Three Strong Earthquakes Around the Qinghai-Tibetan Plateau[J]. EARTHQUAKE, 2021, 41(2): 129-144.
[1] 杜建国, 李营, 崔月菊, 等. 地震流体地球化学[M]. 北京: 地震出版社, 2018. DU Jian-guo, LI Ying, CUI Yue-ju, et al. Seismic Fluid Geochemistry[M]. Beijing: Seismological Press, 2018 (in Chinese). [2] 汪成民, 李宣瑚. 我国断层气测量在地震科学研究中的应用现状[J]. 中国地震, 1991, 7(2): 19-30. WANG Cheng-min, LI Xuan-hu. Applications of fracture gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 1991, 7(2): 19-30 (in Chinese). [3] Du J G, Si X Y, Chen Y X, et al. Geochemical anomalies connected with great earthquake in China[A]. Olafur Stefánsson. Geochemistry Research Advances[C]. New York: Nova Science Publishers Inc, 2008, 57-92. [4] Walia V, Yang T F, Hong W L, et al. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Applied Radiation and Isotopes, 2009, 67(10): 1855-1863. [5] Singh R P, Mehdi W, Sharma M. Complementary nature of surface and atmospheric parameters associated with Haiti earthquake of 12 January 2010[J]. Natural Hazards and Earth System Science, 2010, 10(6): 1299-1305. [6] Zhou X C, Du J G, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake, southwestern China[J]. Geochemical Transactions, 2010, 11: 5. [7] 周晓成, 孙凤霞, 陈志, 等. 汶川MS8.0地震破裂带CO2、 CH4、 Rn和Hg脱气强度[J]. 岩石学报, 2017, 33(1): 291-303. ZHOU Xiao-cheng, SUN Feng-xia, CHEN Zhi, et al. Degassing of CO2, CH4, Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica, 2017, 33(1): 291-303 (in Chinese). [8] Zhou X C, Liu L, Chen Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79: 17-26. [9] Cui Y J, Du J G, Zhang D, et al. Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2513-2519. [10] Cui Y J, Ouzounov D, Hatzopoulos N, et al. Satellite observation of CH4 and CO anomalies associated with the Wenchuan MS8.0 and Lushan MS7.0 earthquakes in China[J]. Chemical Geology, 2017, 469: 185-191. [11] Cui Y J, Li Y, Si X Y, et al. Tectonic controls on near-surface variations in CH4 and CO2 concentrations along the northwestern margin of the Ordos Block, China[J]. Geofluids, 2019, (1): 1-10. [12] Chen Z, Li Y, Liu Z F, et al. CH4 and CO2 Emissions from mud volcanoes on the southern margin of the Junggar Basin, NW China: Origin, output, and relation to regional tectonics[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(5): 5030-5044. [13] Chen Z, Li Y, Liu Z F, et al. Evidence of multiple sources of soil Gas in the Tangshan Fault Zone, North China[J]. Geofluids, 2019, (3): 1-12. [14] Chen Z, Li Y, Du J G, et al. Carbon isotope variations in inorganic carbon materials: Implications for mud volcanic carbon cycling in the northern Tianshan fold zone, Xinjiang, China[J]. Applied Geochemistry, 2018, 97: 32-39. [15] 王基华, 王亮, 孙凤民, 等. 断层气动态变化特征及其与地震活动的关系[J]. 地震, 1994, (3): 58-63. WANG Ji-hua, WANG Liang, SUN Feng-min, et al. The dynamic characteristics of fault gases and its relation to seismic activity[J]. Earthquake, 1994, (3): 58-63 (in Chinese). [16] 李德威. 大陆板内地震的发震机理与地震预报以汶川地震为例[J]. 地质科技情报, 2008, 27(5): 1-6. LI De-wei. Mechanism and prediction of the intraplate earthquakes: An example from Wenchuan earthquake in Sichuan province[J]. Geological Science and Technology Information, 2008, 27(5): 1-6 (in Chinese). [17] 岳中琦. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理[J]. 地学前缘, 2013, 20(6): 15-20. YUE Zhong-qi. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures[J]. Earth Science Frontiers, 2013, 20(6): 15-20 (in Chinese). [18] 王杰, 张雄, 潘黎黎, 等. 芦山地震(MS7.0)前甲烷释放与大气增温异常[J]. 地学前缘, 2013, 20(6): 29-35. WANG Jie, ZHANG Xiong, PAN Li-li, et al. Anomalies of temperature increase and methane release before Lushan earthquake (MS7.0)[J]. Earth Science Frontiers, 2013, 20(6): 29-35 (in Chinese). [19] 王杰, 李献瑞, 贺赤诚, 等. 对流层大气甲烷浓度对地震活动的响应[J]. 地球科学: 中国地质大学学报, 2015, 40(10): 1677-1688. WANG Jie, LI Xian-rui, HE Chi-cheng, et al. Methane concentration response associated with the seismic activity in atmospheric troposphere[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(10): 1677-1688 (in Chinese). [20] Martinelli G, Plescia P. Carbon dioxide and methane emissions from calcareous-marly rock under stress: Experimental tests results[J]. Annals and Geophysics, 2005, 48(1): 167-173. [21] Frankenberg C, Platt U, Wagner T. Retrieval of CO from SCIAMACHY on board ENVISAT: Detection of strongly polluted areas and seasonal patterns in global CO abundances[J]. Atmospheric Chemistry and Physics, 2005, 5(6): 1639-1644. [22] Loyola D, van Geffen J, Valks P, et al. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America[J]. Advances in Geosciences, 2008, 14: 35-40. [23] 康春丽. 川滇地区长波辐射场变化与地震活动关系研究[J]. 地震, 2008, 28(3): 43-48. KANG Chun-li. Research on relation between the OLR field change and earthquake activity in Chuan-Dian region of China[J]. Earthquake, 2008, 28(3): 43-48 (in Chinese). [24] 傅碧宏, 丑晓伟, 邓云山, 等. 塔里木盆地东南缘石油遥感地质的综合分析与评价[J]. 新疆石油地质, 1997, 18(2): 108-113. FU Bi-hong, CHOU Xiao-wei, DENG Yun-shan. The synthetic analysis and evaluation of remote sensed data in petroleum geology in southeastern margin of Tarim Basin[J]. Xinjiang Petroleum Geology, 1997, 18(2): 108-113 (in Chinese). [25] Tronin A A, Hayakawa M, Molchanov O A. Thermal IR satellite data application for earthquake research in Japan and China[J]. Journal of Geodynamics, 2002, 33(4-5): 519-534. [26] Dey S, Sarkar S, Singh R P. Anomalous changes in column water vapor after Gujarat earthquake[J]. Advances in Space Research, 2004, 33(3): 274-278. [27] Ganguly N D. Variation in atmospheric ozone concentration following strong earthquakes[J]. International Journal of Remote Sensing, 2009, 30(1/2): 349-356. [28] Singh R P, Kumar S J, Zlotnicki J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585. [29] Ganguly N D. The impact of transported ozone-rich air on the atmospheric ozone content following the 26 January 2001 and 7 March 2006 Gujarat earthquake[J]. Remote Sensing Letters, 2011, 2(3): 195-202. [30] Amani A, Mansor S, Pradhan B, et al. Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran[J]. Arabian Journal of Geosciences, 2014, 7(4): 1517-1527. [31] 崔月菊, 杜建国, 陈志, 等. 2010年玉树MS7.1地震前后大气物理化学遥感信息[J]. 地球科学进展, 2011, 26(7): 787-794. CUI Yue-ju, DU Jian-guo, CHEN Zhi, et al. Remote sensing signals of atmospheric physics and chemistry related to 2010 Yushu MS7.1 earthquake[J]. Advances in Earth Science, 2011, 26(7): 787-794 (in Chinese). [32] 崔月菊, 杜建国, 周晓成, 等. 墨西哥下加利福尼亚MW7.2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报, 2011, 30(4): 458-464. CUI Yue-ju, DU Jian-guo, ZHOU Xiao-cheng, et al. Geochemical anomaly of CO remote sensing associated with Baja California MW7.2 earthquake in Mexico[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 458-464 (in Chinese). [33] 郭广猛, 曹云刚, 龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展, 2006, 21(7): 695-698. GUO Guang-meng, CAO Yun-gang, GONG Jian-ming. Monitoring anomaly before earthquake with MODIS and MOPITT data[J]. Advances in Earth Science, 2006, 21(7): 695-698 (in Chinese). [34] Pulinets S A, Dunajecka M A. Specific variations of air temperature and relative humidity around the time of Michoacan earthquake MS8.1 Sept.19, 1985 as a possible indicator of interaction between tectonic plates[J]. Tectonophysics, 2007, 431(1-4): 221-230. [35] 孙玉涛, 崔月菊, 刘永梅, 等. 苏门答腊2004、 2005年两次大地震前后CO和O3遥感信息[J]. 遥感信息, 2014, 29(2): 49-55. SUN Yu-tao, CUI Yue-ju, LIU Yong-mei, et al. Remote sensing anomalies of CO and O3 related to two Giant Sumatra earthquakes occurred in 2004 and 2005[J]. Remote Sensing Information, 2014, 29(2): 49-55 (in Chinese). [36] 荆凤, 申旭辉, 张铁宝, 等. 与地震相关的活动断裂带红外辐射变化特征[J]. 国土资源遥感, 2013, 25(1): 56-60. JING Feng, SHENG Xu-hui, ZHANG Tie-bao, et al. Variation characteristics in infrared radiation of active fault zone related to earthquakes[J]. Remote Sensing for Land and Resources, 2013, 25(1): 56-60 (in Chinese). [37] 崔月菊, 杜建国, 李营, 等. 探测与2008年汶川MS8.0和2013年芦山MS7.0地震相关的大气CH4和CO异常变化[J]. 矿物岩石地球化学通报, 2016, 35(5): 1022-1027 CUI Yue-ju, DU Jian-guo, LI Ying, et al. Detecting anomalies of atmospheric total column CH4 and CO related to the 2008 Wenchuan MS8.0 and Lushan MS7.0 earthquakes[J]. Bulletion of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 1022-1027 (in Chinese). [38] 邓起东, 程绍平, 马冀, 等. 青藏高原地震活动特征及当前地震活动形势[J]. 地球物理学报, 2014, 57(7): 2025-2042. DENG Qi-dong, CHEN Shao-ping, MA Ji, et al. Seismic activities and earthquake potential in the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2014, 57(7): 2025-2042 (in Chinese). [39] 高原, 石玉涛, 王琼. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 2020, 63(3): 802-816. GAO Yuan, SHI Yu-tao, WANG Qiong. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 2020, 63(3): 802-816 (in Chinese). [40] 刘小梅, 吴晶, 梁春涛, 等. 龙门山断裂带最新地震活动特征及其意义[J]. 地球物理学报, 2019, 62(4): 1312-1322. LIU Xiao-mei, WU Jin, LIANG Chun-tao, et al. The latest seismicity characteristics and significance in Longmenshan Fault Zone[J]. Chinese journal of Geophysics, 2019, 62(4): 1312-1322 (in Chinese). [41] 李国辉, 白玲, 丁林, 等. 2019年西藏墨脱MS6.3地震震源参数及其构造意义[J]. 地球物理学报, 2020, 63(3): 1214-1223. LI Guo-hui, BAI Ling, DING Lin, et al. Source parameters of the 2019 MS6.3 Medog earthquake and its tectonic implications[J]. Chinese Journal of Geophysics, 2020, 63(3): 1214-1223 (in Chinese). [42] 程建武, 陈继峰, 刘旭宙. 青藏高原北部地区地震统计区划分及地震活动特征[J]. 地震地磁观测与研究, 2020, 41(3): 1-11. CHEN Jian-bin, CHEN Ji-feng, LIU Xu-zhou. Division of seismic statistical areas and analysis of seismicity trend in the northern part of the Qinghai-Tibet Plateau[J]. Seismological and Geomagnetic Observation and Research, 2020, 41(3): 1-11 (in Chinese). [43] Won Y-I. Readme document for AIRS Level-3 version 5 standard products: Daily (AIRH3STD, AIRX3STD, AIRS3STD) 8-days (AIRH3ST8, AIRX3ST8, AIRS3ST8) & monthly (AIRH3STM, AIRX3STM, AIRS3STM). 2008. http:∥disc.sci.gsfc.nasa.gov/AIRS/documentation/readmes/README.AIR-3ST.pdf. [44] Tian B, Manning E, Fetzer E, et al. AIRS/AMSU/HSB Version 6 Level 3 Product User Guide[R]. Pasadena, CA, USA: Jet Propulsion Laboratory, California Institute of Technology, 2013. [45] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(增刊): 12-20. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. Strong earthquake activity and active blocks in mainland China[J]. Science in China(Series D), 2003, 33(S1): 12-20 (in Chinese). [46] 闻学泽, 杜方, 张培震, 等. 巴彦喀拉块体北和东边界地震序列的关联性与2008年汶川地震[J]. 地球物理学报, 2011, 54(3): 706-716. WEN Xue-ze, DU Fang, ZHANG Pei-zhen, et al. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2011, 54(3): 706-716 (in Chinese). [47] 徐锡伟, 陈桂华, 王启欣, 等. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 2017, 60(10): 4018-4026. XU Xi-wei, CHEN Gui-hua, WANG Qi-xin, et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018-4026 (in Chinese). [48] 郭晓, 张元生, 魏从信, 等. 汶川8.0级和仲巴6.8级地震中波红外热辐射异常[J]. 地球学报, 2014, 35(3): 338-344. GUO Xiao, ZHANG Yuan-sheng, WEI Cong-xin, et al. Medium wave infrared brightness anomalies of Wenchuan 8.0 and Zhongba 6.8 earthquakes[J]. Acta Geoscientica Sinica, 2014, 35(3): 338-344 (in Chinese). [49] 张丽峰, 郭晓, 章鑫, 等. 2017年九寨沟MS7.0地震前热红外亮温异常与盆地效应[J]. 地震学报, 2018, 40(6): 797-808. ZHANG Li-feng, GUO Xiao, ZHANG Xin, et al. Anomaly of thermal infrared brightness temperature and basin effect before Jiuzhaigou MS7.0 earthquake in 2017[J]. Acta Seismologica Sinica, 2018, 40(6): 797-808 (in Chinese). [50] 魏从信. 地震热辐射研究[D]. 兰州: 中国地震局兰州地震研究所, 2011. WEI Cong-xin. Research on seismic thermal radiation[D]. LanZhou: Lanzhou Institute of Seismology, CEA, 2011 (in Chinese). [51] 郭晓, 张元生, 钟美娇, 等. 提取地震热异常信息的功率谱相对变化法及震例分析[J]. 地球物理学报, 2010, 53(11): 2688-2695. GUO Xiao, ZHANG Yuan-sheng, ZHONG Mei-jiao, et al. Variation characteristics of OLR for the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(11): 2688-2695 (in Chinese). [52] 张丽峰, 王培玲, 张朋涛, 等. 2017年西藏米林6.9级地震前的热红外异常分析[J]. 地震工程学报, 2020, 42(2): 360-367. ZHANG Li-feng, WANG Pei-ling, ZHANG Peng-tao, et al. Thermal infrared anomalies before Milin MS6.9 earthquake in 2017[J]. China Earthquake Engineering Journal, 2020, 42(2): 360-367 (in Chinese). [53] 刘海博, 崔月菊, 辛存林. 探测与2014年新疆于田MS7.3地震相关的大气CO和O3异常变化[J]. 地震, 2020, 40(1): 99-111. LIU Hai-bo, CUI Yue-ju, XIN Cun-lin. Detecting anomalies of atmospheric total column CO and O3 related to the 2014 Yutian MS7.3 earthquake[J]. Earthquake, 2020, 40(1): 99-111 (in Chinese). [54] 刘海博, 辛存林, 崔月菊. 基于AIRS传感器的新疆于田MS7.3地震前后CO变化特征[J]. 矿物岩石地球化学通报, 2020, 39(2): 162-170. LIU Hai-bo, XIN Cun-lin, CUI Yue-ju. Characteristics of CO changes before and after the Yutian MS7.3 earthquake in Xinjiang based on AIRS data[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(2): 162-170 (in Chinese). [55] 张国庆, 祝意青, 梁伟锋, 等. 2008年和2014年两次于田MS7.3地震前区域重力变化特征[J]. 地震, 2018, 38(4): 14-21. ZHANG Guo-qing, ZHU Yi-qing, LIANG Wei-feng, et al. Spatial patterns of regional gravity changes before the 2008 and 2014 Yutian MS7.3 earthquakes[J]. Earthquake, 2018, 38(4): 14-21 (in Chinese). [56] Tamburello G, Pondrelli S, Chiodini G, et al. Global-scale control of extensional tectonics on CO2 earth degassing[J]. Nature Communications, 2018, 9: 4608. [57] Cui Y J, Li Y, Si X Y, et al. Tectonic controls on near-surface variations in CH4 and CO2 concentrations along the northwestern margin of the Ordos Block, China[J]. Geofluids, 2019, 7909483. [58] Sun Y T, Zhou X C, Zheng G D, et al. Carbon monoxide degassing from seismic fault zones in the Basin and Range province, west of Beijing, China[J]. Journal of Asian Earth Sciences, 2017, 149: 41-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||