[1] 李继业. 震灾评估仿真系统的研究与实现[D]. 上海: 复旦大学, 2010. LI Ji-ye. Research and realization of earthquake disaster assessment simulation system[D]. Shanghai: Fudan University, 2010 (in Chinese). [2] 王晓青, 窦爱霞, 王龙, 等. 2013年四川芦山7.0级地震烈度遥感评估[J]. 地球物理学报, 2015, 58(1): 163-171. WANG Xiao-qing, DOU Ai-xia, WANG Long, et al. RS-based assessment of seismic intensity of the 2013 Lushan, Sichuan, China MS7.0 earthquake[J]. Chinese Journal of Geophysics, 2015, 58(1): 163-171 (in Chinese). [3] 于洋, 施国武, 刘斌, 等. 基于全卷积神经网络的无人机影像建筑物提取[J]. 水利水电技术, 2020, 51(7): 31-38. YU Yang, SHI Guo-wu, LIU Bin, et al. Fully convolutional network-based building extraction of image from unmanned aerial vehicle[J]. Water Resources and Hydropower Engineering, 2020, 51(7): 31-38 (in Chinese). [4] 张春森, 葛英伟, 蒋萧. 基于稀疏约束SegNet的高分辨率遥感影像建筑物提取[J]. 西安科技大学学报, 2020, 40(3): 441-448. ZHANG Chun-sen, GE Ying-wei, JIANG Xiao. High-resolution remote sensing image building extraction based on sparsely constrained SegNet[J]. Journal of Xi'an University of Science and Technology, 2020, 40(3): 441-448 (in Chinese). [5] 张浩然, 赵江洪, 张晓光. 利用U-Net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3): 143-150. ZHANG Hao-ran, ZHAO Jiang-hong, ZHANG Xiao-guang. High-resolution image building extraction using U-net Neural Network[J]. Remote Sensing Information, 2020, 35(3): 143-150 (in Chinese). [6] 焦利伟, 张敏, 麻连伟, 等. 基于Pytorch框架搭建U-Net网络模型的遥感影像建筑物提取研究[J]. 河南城建学院学报, 2020, 29(4): 52-57. JIAO Li-wei, ZHANG Min, MA Lian-wei, et al. Building extraction from remote sensing images using U-Net network model based on Pytorch framework[J]. Journal of Henan University of Urban Construction, 2020, 29(4): 52-57 (in Chinese). [7] 杨乐, 王慧, 李烁, 等. 结合DeepLabv3架构的多源数据建筑物提取方法[J]. 测绘与空间地理信息, 2020, 43(6): 62-66. YANG Le, WANG Hui, LI Shuo, et al. Multi-source data building extraction method combined with DeepLabv3 architecture[J]. Geomatics & Spatial Information Technology, 2020, 43(6): 62-66 (in Chinese). [8] Chen L C, Zhu Y K, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[J]. Computer Vision and Pattern Recognition, 2018.1802.02611. [9] 陈丹丹. 基于Deeplabv3+的高分遥感影像道路损毁信息提取方法研究[D]. 北京: 中国地震局地震预测研究所, 2020. CHEN Dan-dan. Research on the extraction method of road damage information from high-resolution remote sensing images based on Deeplabv3+[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2020 (in Chinese). [10] Arbib M A. The handbook of brain theory and neural networks[M]∥Lecun Y, Bengio Y. Convolutional networks for images, speech and time series. Cambridge: MIT Press, 1995: 255-258. [11] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. [12] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770-778. [13] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL]. (2016-04-30) [2020-10-15]. [14] Cheng X Y, Zhao L Z, Hu Q, et al. Real-time semantic segmentation based on dilated convolution smoothing and lightweight up-sampling[J]. Laser & Optoelectronics Progress, 2020, 57(2): 021017. [15] 施国武, 邢宽平, 张俊贤, 等. 基于深度学习的无人机影像建筑物自动提取[J]. 地矿测绘, 2020, 36(1): 28-31. SHI Guo-wu, XING Kuan-ping, ZHANG Jun-xian, et al. Buildings extraction from UAV images based on deep learning[J]. Surveying and Mapping of Geology and Mineral Resources, 2020, 36(1): 28-31 (in Chinese). [16] Cubuk E D, Zoph B, Mane D, et al. Auto augment: Learning augmentation policies from data[J]. Computer Vision and Pattern Recognition, 2018, 10(3): 108-124. [17] Chawla N V, Bowyer K W, Hall L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357. [18] Inoue H. Data Augmentation by Pairing Samples for Images Classification[J]. IEEE Geoscience & Remote Sensing Letters, 12(11): 2321-2325. [19] Zhang H Y, Cisse M, Dauphin Y N, et al. Mixup: Beyond empirical risk minimization[J]. International Journal of Remote Sensing, 36(12): 3144-3169. [20] 王波, 郭迅, 宣越. 基于新视角的震害分析以四川长宁6.0级地震为例[J]. 震灾防御技术, 2020, 15(3): 496-509. WANG Bo, GUO Xun, XUN Yue. Analysis of earthquake damage from a new perspective: A case study of Changning M6.0 earthquake in Sichuan Province[J]. Technology for Earthquake Disaster Prevention, 2020, 15(3): 496-509 (in Chinese). [21] 中国地震台网中心. 中国地震台网历史查询[EB/OL]. (2019-06-24)[2019-09-04]. http:∥www.ceic.ac.cn/history. China Earthquake Network Center. History query of China Earthquake Networks[EB/OL]. (2019-06-24)[2019-09-04]. http:∥www.ceic.ac.cn/history (in Chinese). [22] 应急管理部. 应急管理部持续指导四川长宁地震抗震救灾工作[EB/OL]. (2019-06-18)[2019-09-04]. https:∥www.mem.gov.cn/xw/bndt/201906/t20190618_310848.shtml. Ministry of Emergency Management. The Ministry of Emergency Management continues to guide the earthquake relief work in Changning, Sichuan[EB/OL]. (2019-06-18)[2019-09-04]. https:∥www.mem.gov.cn/xw/bndt/201906/t20190618_310848.shtml (in Chinese). [23] 潘毅, 陈建, 包韵雷, 等. 长宁6.0级地震村镇建筑震害调查与分析[J]. 建筑结构学报, 2020, 41(S1): 297-306. PAN Yi, CHEN Jian, BAO Yun-lei, et al. Investigation and analysis of earthquake damage to villages and towns in Changning M6.0 earthquake[J]. Journal of Building Structures, 2020, 41(S1): 297-306 (in Chinese). [24] 陈梦, 王晓青. 全卷积神经网络在建筑物震害遥感提取中的应用研究[J]. 震灾防御技术, 2019, 14(4): 810-820. CHEN Meng, WANG Xiao-qing. The study on extraction of seismic damage of buildings from remote sensing image based on fully convolutional neural network[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 810-820 (in Chinese). |