[1] 郭祥云, 汪贞杰. 2022年青海门源M6.9地震矩心矩张量解[J]. 地震科学进展, 2022, 52(2): 55-56. GUO Xiang-yun, WANG Zhen-jie. The centroid moment tensor solution of 2022 Menyuan M6.9 earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022, 52(2): 55-56 (in Chinese). [2] 韩立波. 2022年青海门源MS6.9地震震源机制解[J]. 地震科学进展, 2022, 52(2): 49-54. HANG Li-bo. Focal mechanism of 2022 Menyuan MS6.9 earthquake in Qinghai Province[J]. Progress in Earthquake Sciences, 2022, 52(2): 49-54 (in Chinese). [3] 潘家伟, 李海兵, Chevalier M L, 等. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报, 2022, 96(1): 215-231. PAN Jia-wei, LI Hai-bing, Chevalier M L, et al. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 2022, 96(1): 215-231 (in Chinese). [4] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑), 2002, 32(12): 1020-1030. DENG Qi-dong, ZHANG Pei-zhen, RAN Yong-kang, et al. Basic characteristics of active tectonics of China[J]. Science in China (Series D), 2002, 32(12): 1020-1030 (in Chinese). [5] 胡朝忠, 杨攀新, 李智敏, 等. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报, 2016, 59(5): 1637-1646. HU Chao-zhong, YANG Pan-xin, LI Zhi-min, et al. Seismogenic mechanism of the 21 January 2016 Menyuan, Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics, 2016, 59(5): 1637-1646 (in Chinese). [6] Yang H F, Wang D, Guo R M, et al. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2022: 100113. [7] 郭鹏. 北祁连山冷龙岭断裂大震复发行为与危险性研究[D]. 北京: 中国地震局地质研究所, 2019. GUO Peng. Earthquake recurrence behavior and seismic hazards of the Lenglongling Fault, Northern Qilian Shan[D]. Beijing: Institute of Geology, China Earthquake Administration, 2019 (in Chinese). [8] Liu J R, Ren Z K, Zhang H P, et al. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone[J]. Tectonics, 2022, 41(2): e2021TC006992. [9] Zheng W J, Zhang P Z, He W G, et al. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics, 2013, 584: 267-280. [10] Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 2007, 26(5): TC2010. [11] Zheng G, Wang H, Wright T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312. [12] 郭鹏, 韩竹军, 姜文亮, 等. 青藏高原东北缘冷龙岭断裂全新世左旋滑动速率[J]. 地震地质, 2017, 39(2): 323-341. GUO Peng, HAN Zhu-jun, JIANG Wen-liang, et al. Holocene left-lateral slip rate of the Lenglongling fault, northeastern margin of the Tibetan plateau[J]. Seismology and Geology, 2017, 39(2): 323-341 (in Chinese). [13] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(S1): 12-20. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. Strong earthquake activity and the active blocks in mainland China[J]. Science in China (Series D), 2003, 33(S1): 12-20 (in Chinese). [14] Zhang W Q, Jiao D C, Zhang P Z, et al. Displacement along the Haiyuan fault associated with the great 1920 Haiyuan, China, earthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(1): 117-131. [15] Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap’, on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 1995, 120(3): 599-645. [16] 孙安辉, 高原, 赵国峰, 等. 2022年1月8日青海门源6.9级地震的震源区结构特征和b值意义初探[J]. 地球物理学报, 2022, 65(3): 1175-1183. SUN AN-hui, GAO Yuan, ZHAO Guo-feng, et al. Seismic structure and b-value in the focal area of the 8th January 2022 Menyuan, Qinghai MS6.9 earthquake[J]. Chinese Journal of Geophysics, 2022, 65(3): 1175-1183 (in Chinese). [17] 袁道阳, 刘百篪, 吕太乙, 等. 毛毛山断裂带位移累积滑动亏损特征及其分段意义讨论[J]. 西北地震学报, 1996, 18(4): 60-67. YUAN Dao-yang, LIU Bai-chi, LÜ Tai-yi, et al. The cumulative slip deficit of displacements and significance of segmentation along the Maomaoshan fault zone[J]. Northwestern Seismological Journal, 1996, 18(4): 60-67 (in Chinese). [18] 何文贵, 刘百篪, 吕太乙, 等. 天祝盆地边缘断层的全新世活动及盆地的演化与形成[J]. 西北地震学报, 1996, 18(1): 61-66. HE Wen-gui, LIU Bai-chi, Lü Tai-yi, et al. Holocene activity of faults around the Tianzhu basin and evolutionary process of the basin[J]. Northwestern Seismological Journal, 1996, 18(1): 61-66 (in Chinese). [19] 闵伟. 区域古地震研究以青藏高原东北缘和华北西缘为例[D]. 北京: 中国地震局地质研究所, 1998. MIN Wei. Region paleoearthquake research: An example in the northeastern margin of Tibet and western margin of Huabei[D]. Beijing: Institute of Geology, China Earthquake Administration, 1998 (in Chinese). [20] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the northern hayward fault, california[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368. [21] Ross Z E, Trugman D T, Hauksson E, et al. Searching for hidden earthquakes in Southern California[J]. Science, 2019, 364(6442): 767-771. [22] Shelly D R. A high-resolution seismic catalog for the Initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity[J]. Seismological Research Letters, 2020, 91(4): 1971-1978. [23] 王未来, 房立华, 吴建平, 等. 2021年青海玛多MS7.4地震序列精定位研究[J]. 中国科学: 地球科学, 2021, 51(7): 1193-1202. WANG Wei-lai, FANG Li-hua, WU Jian-ping, et al. Aftershock sequence relocation of the 2021 MS7.4 Maduo earthquake, Qinghai, China[J]. Science China: Earth Sciences, 2021, 51(7): 1193-1202 (in Chinese). [24] 黄浩, 付虹, 沙成宁, 等. 2016年青海门源MS6.4地震重定位[J]. 地震学报, 2017, 39(2): 176-187. HUANG Hao, FU Hong, SHA Cheng-ning, et al. Relocation of the 2016 MS6.4 Menyuan, Qinghai earthquake[J]. Acta Seismologica Sinica, 2017, 39(2): 176-187 (in Chinese). [25] Han S C, Zhang H J, Xin H L, et al. USTClitho2.0: Updated unified seismic tomography models for continental China lithosphere from joint inversion of body-wave arrival times and surface-wave dispersion data[J]. Seismological Research Letters, 2022, 93(1): 201-215. [26] 张先康, 嘉世旭, 赵金仁, 等. 西秦岭—东昆仑及邻近地区地壳结构深地震宽角反射/折射剖面结果[J]. 地球物理学报, 2008, 51(2): 439-450. ZHANG Xian-kang, JIA Shi-xu, ZHAO Jin-ren, et al. Crustal structure beneath West Qinling-East Kunlun orogen and its adjacent area: Results of wide-angle seismic reflection and refraction experiment[J]. Chinese Journal of Geophysics, 2008, 51(2): 439-450 (in Chinese). [27] Zhang Z J, Bai Z M, Klemperer S L, et al. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation[J]. Tectonophysics, 2013, 606: 140-159. [28] Wang W J, Meng X F, Peng Z G, et al. Increasing background seismicity and dynamic triggering behaviors with nearby mining activities around Fangshan Pluton in Beijing, China[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5624-5638. [29] Mousavi S M, Ellsworth W L, Zhu W Q, et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking[J]. Nature Communications, 2020, 11(1): 3952. [30] Gutenberg B, Richter C F. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 1994, 34(4): 185-188. [31] Scholz C H. On the stress dependence of the earthquake b value[J]. Geophysical Research Letters, 2015, 42(5): 1399-1402. [32] Toda S, Stein R S, Sevilgen V, et al. Coulomb 3.3 graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide[R]. Menlo Park: U.S. Geological Survey Open-File Report 2011—1060, 2011. [33] Zhu L P, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-1641. [34] Zhang Y Y, An Y R, Long F, et al. Short-term foreshock and aftershock patterns of the 2021 MS6.4 Yangbi earthquake sequence[J]. Seismological Research Letters, 2022, 93(1): 21-32. [35] 房立华, 吴建平, 王未来, 等. 2014年新疆于田MS7.3级地震序列重定位[J]. 地球物理学报, 2015, 58(3): 802-808. FANG Li-hua, WU Jian-ping, WANG Wei-lai, et al. Relocation of the 2014 MS7.3 earthquake sequence in Yutian, Xinjiang[J]. Chinese Journal of Geophysics, 2015, 58(3): 802-808 (in Chinese). [36] 左可桢, 陈继锋. 门源地区地壳三维体波速度结构及地震重定位研究[J]. 地球物理学报, 2018, 61(7): 2788-2801. ZUO Ke-zhen, CHEN Ji-feng. 3D body-wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics, 2018, 61(7): 2788-2801 (in Chinese). [37] Wiemer S, Wyss M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United states, and Japan[J]. Bulletin of the Seismological Society of America, 2000, 90(4): 859-869. [38] 雷东宁, 刘杰, 刘姝妹, 等. 2016年1月21日青海门源M6.4地震发震构造模式[J]. 地震地质, 2018, 40(1): 107-120. LEI Dong-ning, LIU Jie, LIU Shu-mei, et al. Discussion on the seismogenic structure of the 2016 Menyuan M6.4 earthquake in Menyuan, Qinghai[J]. Seismology and Geology, 2018, 40(1): 107-120 (in Chinese). [39] Henry C, Das S. Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion and scaling relations[J]. Geophysical Journal International, 2001, 147(2): 272-293. [40] Peng Z G, Zhao P. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nature Geoscience, 2009, 2(12): 877-881. [41] Li Y Q, Wang D, Xu S H, et al. Thrust and conjugate strike‐slip faults in the 17 June 2018 M-JMA 6.1 (MW5.5) Osaka, Japan, earthquake sequence[J]. Seismological Research Letters, 2019, 90(6): 2132-2141. [42] 袁兆德, 刘静, 李雪, 等. 2014年新疆于田MS7.3地震地表破裂带精细填图及其破裂特征[J]. 中国科学: 地球科学, 2021, 51(2): 276-298. YUAN Zhao-de, LIU Jing, LI Xue, et al. Detailed mapping of the surface rupture of the 12 February 2014 Yutian MS7.3 earthquake, Altyn Tagh fault, Xinjiang, China[J]. Science China: Earth Sciences, 2021, 51(2): 276-298. [43] Perfettini H, Frank W B, Marsan D, et al. A Model of aftershock migration driven by afterslip[J]. Geophysical Research Letters, 2018, 45(5): 2283-2293. [44] Sieh K, Jones L, Hauksson E, et al. Near-field investigations of the Landers earthquake sequence, April to July 1992[J]. Science, 1993, 260(5105): 171-176. [45] Xu X W, Yu G H, Klinger Y, et al. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05316. [46] Wiemer S. A software package to analyze seismicity: ZMAP[J]. Seismological Research Letters, 2001, 72(3): 373-382. [47] Wessel P, Luis J F, Uieda L, et al. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 5556-5564. |