[1] Allen R. Automatic earthquake recognition and timing from single trace[J]. Bulletin of the Seismological Society of America, 1978, 68(5): 1521-1532. [2] Allen R. Automatic phase pickers: Their present use and future prospects[J]. Bulletin of the Seismological Society of America, 1982, 72(6B): S225-S242. [3] Gibbons S J, Ringdal F. The detection of low magnitude seismic events using array-based waveform correlation[J]. Geophysical Journal International, 2006, 165(1): 149-166. [4] Shelly D R, Beroza G C, Ide S. Non-volcanic tremor and low-frequency earthquake swarms[J]. Nature, 2007, 446(7133): 305-307. [5] Brown J R, Beroza G C, Shelly D R. An autocorrelation method to detect low frequency earthquakes within tremor[J]. Geophysical Research Letters, 2008, 35(16): L16305. [6] Aguiar A C, Beroza G C. PageRank for earthquakes[J]. Seismological Research Letters, 2014, 85(2): 344-350. [7] Yoon C E, O’Reilly O, Bergen K J, et al. Earthquake detection through computationally efficient similarity search[J]. Science Advances, 2015, 1(11): e1501057. [8] 周连庆, 赵翠萍, 张捷, 等. 中国地震科学实验场人工智能实时地震监测分析系统的应用与展望[J]. 地震, 2021, 41(3): 1-21. ZHOU Lian-qing, ZHAO Cui-ping, ZHANG Jie, et al. Application and prospect of artificial intelligence real-time seismic monitoring analysis system at the China Seismic Experimental Site[J]. Earthquake, 2021, 41(3): 1-21 (in Chinese). [9] 隗永刚, 杨千里, 王婷婷, 等. 基于深度学习残差网络模型的地震和爆破识别[J]. 地震学报, 2019, 41(5): 646-657. WEI Yong-gang, YANG Qian-li, WANG Ting-ting, et al. Earthquake and explosion identification based on deep learning residual network model[J]. Acta Seismologica Sinica, 2019, 41(5): 646-657 (in Chinese). [10] 刘芳, 蒋一然, 宁杰远, 等. 结合台阵策略的震相拾取深度学习方法[J]. 科学通报, 2020, 65(11): 1016-1026. LIU Fang, JIANG Yi-ran, NING Jie-yuan, et al. An array-assisted deep learning approach to seismic phase-picking[J]. Chinese Science Bulletin, 2020, 65(11): 1016-1026 (in Chinese). [11] Perol T, Gharbi M, Denolle M A. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2): e1700578. [12] Ross Z E, Meier M A, Hauksson E, et al. Generalized seismic phase detection with deep learning[J]. Bulletin of the Seismological Society of America, 2018, 108(5A): 2894-2901. [13] Wang J, Xiao Z W, Liu C, et al. Deep learning for picking seismic arrival times[J]. Journal of Geophysical Research, 2019, 124(7): 6612-6624. [14] Zhou Y J, Yue H, Kong Q K, et al. Hybrid event detection and phase-picking algorithm using convolutional and recurrent neural networks[J]. Seismological Research Letters, 2019, 90(3): 1079-1087. [15] Zhu W Q, Beroza G C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method[J]. Geophysical Journal International, 2018, 216(1): 261-273. [16] Li Z F, Meier M A, Hauksson E, et al. Machine learning seismic wave discrimination: Application to earthquake early warning[J]. Geophysical Research Letters, 2018, 45(10): 4773-4779. [17] Mousavi S M, Ellsworth W L, Zhu W Q, et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking[J]. Nature Communication, 2020, 11(1): 3952. [18] Xiao Z W, Wang J, Liu C, et al. Siamese earthquake transformer: A pair-input deep-learning model for earthquake detection and phase picking on a seismic array[J]. Journal of Geophysical Research, 2021, 126(5): e2020JB021444. [19] 李春宏. 蓄水前白鹤滩水库及附近地区地震活动特征研究[D]. 北京: 中国地震局地震预测研究所, 2018. LI Chun-hong. Study on seismic activity characteristics of Baihetan Reservoir and nearby areas before impoundment[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2018 (in Chinese). [20] Mousavi S M, Sheng Y X, Zhu W Q, et al. STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI[J]. IEEE Access, 2019, (7): 179464-179476. [21] Zhang M, Ellsworth W L, Beroza G C, et al. Rapid earthquake association and location[J]. Seismological Research Letters, 2019, 90(6): 2276-2284. [22] 苏金波, 刘敏, 张云鹏, 等. 基于深度学习构建2021年5月21日云南漾濞MS6.4地震序列高分辨率地震目录[J]. 地球物理学报, 2021, 64(8): 2647-2656. SU Jin-bo, LIU Min, ZHANG Yun-peng, et al. High resolution earthquake catalog building for the 21 May 2021 Yangbi, Yunnan, MS6.4 earthquake sequence using deep-learning phase picker[J]. Chinese Journal of Geophysics, 2021, 64(8): 2647-2656 (in Chinese). [23] 赵明, 唐淋, 陈石, 等. 基于深度学习到时拾取自动构建长宁地震前震目录[J]. 地球物理学报, 2021, 64(1): 54-66. ZHAO Ming, TANG Lin, CHEN Shi, et al. Machine learning based automatic foreshock catalog building for the 2019 MS6.0 Changning, Sichuan earthquake[J]. Chinese Journal of Geophysics, 2021, 64(1): 54-66 (in Chinese). [24] Kissling E, Ellsworth W L, Eberhart-Phillips D, et al. Initial reference models in local earthquake tomography[J]. Journal of Geophysical Research, 1994, 99(B10): 19635-19646. [25] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368. [26] Zhou L Q, Zhao C P, Zhang M, et al. Machine-learning-based earthquake locations reveal the seismogenesis of the 2020 MW5.0 Qiaojia, Yunnan earthquake[J]. Geophysical Journal International, 2022, 228(3): 1637-1647. [27] Xin H L, Zhang H J, Kang M, et al. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismological Research Letters, 2019, 90(1): 229-241. |