[1] 张学民, 申旭辉, 赵庶凡, 等. 地震电离层探测技术及其应用研究进展[J]. 地震学报, 2016, 38(3): 356-375. ZHANG Xue-min, SHEN Xu-hui, ZHAO Shu-fan, et al. The seismo-ionospheric monitoring technologies and their application research development[J]. Acta Seismologica Sinica, 2016, 38(3): 356-375 (in Chinese). [2] Leonard R S, Barnes R A. Observation of ionospheric disturbances following the Alaska earthquake[J]. Journal of Geophysical Research, 1965, 70(5): 1250-1253. [3] Pulinets S A. Strong earthquake prediction possibility with the help of topside sounding from satellites[J]. Advances in Space Research, 1998, 21(3): 455-458. [4] Liu J Y, Chen Y I, Pulinets S A, et al. Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes[J]. Geophysical Research Letters, 2000, 27(19): 3113-3116. [5] Singh O P, Chauhan V, Singh V, et al. Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006—November 2007[J]. Physics and Chemistry of the Earth Parts A/B/C, 2009, 34(6-7): 479-484. [6] Shah M, Jin S G. Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw≥5.0 earthquakes (1998—2014)[J]. Journal of Geodynamics, 2015, 92: 42-49. [7] Benghanem K, Kahlouche S, Abtout A, et al. The cross correlation method response prior to earthquakes using fOF2 data from various ionospheric stations[J]. Advances in Space Research, 2019, 63(8): 2638-2658. [8] Yan R, Shen X H, Huang J P, et al. Examples of unusual ionospheric observations by the CSES prior to earthquakes[J]. Earth and Planetary Physics, 2018, 2(6): 515-526. [9] Zhang X M, Wang Y L, Boudjada M Y, et al. Multi-experiment observations of ionospheric disturbances as precursory effects of the Indonesian MS6.9 earthquake on August 05, 2018[J]. Remote Sensing, 2020, 12: 4050. [10] Li M, Shen X H, Parrot M, et al. Primary joint statistical seismic influence on ionospheric parameters recorded by the CSES and DEMETER satellites[J]. Journal of Geophysical Research: Space Physics, 2020, 125: e2020JA028116. [11] 张学民, 刘静, 熊攀, 等. 2020年新疆于田6.4级地震前电离层扰动现象分析[J]. 地震, 2021, 41(2): 145-157. ZHANG Xue-min, LIU Jing, XIONG Pan, et al. The seismo-ionospheric disturbances before the 2020 Yutian MS6.4 earthquake[J]. Earthquake, 2021, 41(2): 145-157 (in Chinese). [12] Xie T, Chen B Y, Wu L X, et al. Detecting seismo-ionospheric anomalies possibly associated with the 2019 Ridgecrest (California) earthquakes by GNSS, CSES, and Swarm observations[J]. Journal of Geophysical Research: Space Physics, 2021, 126: e2020JA028761. [13] Du X H, Zhang X M. Ionospheric disturbances possibly associated with Yangbi MS6.4 and Maduo MS7.4 earthquakes in China from China seismo electromagnetic satellite[J]. Atmosphere, 2022, 13: 438. [14] Liu J, Qiao X L, Zhang X M, et al. Using a spatial analysis method to study the seismo-ionospheric disturbances of electron density observed by China seismo-electromagnetic satellite[J]. Frontiers in Earth Science, 2022, 10: 811658. [15] Liu J, Zhang X M, Wu W W, et al. The seismo-ionospheric disturbances before the 9 June 2022 Maerkang MS6.0 earthquake swarm[J]. Atmosphere, 2022, 13: 1745. [16] Zhu K Y, Zheng L, Yan R, et al. The variations of electron density and temperature related to seismic activities observed by CSES[J]. Natural Hazards Research, 2021, 1(2): 88-94. [17] Huang H, Yan R, Liu D, et al. The variations of plasma density recorded by CSES-1 satellite possibly related to Mexico MS7.1 earthquake on 8th September 2021[J]. Natural Hazards Research, 2022, 2(1): 11-16. [18] Marchetti D, De Santis A, Shen X H, et al. Possible lithosphere-atmosphere-ionosphere coupling effects prior to the 2018 MW=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data[J]. Journal of Asian Earth Sciences, 2019, 188: 104097. [19] Song R, Hattori K, Zhang X M, et al. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 205: 105291. [20] Piersanti M, Materassi M, Battiston R, et al. Magnetospheric-Ionospheric-Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan earthquake[J]. Remote Sensing, 2020, 12: 3299. [21] De Santis A, Marchetti D, Perrone L, et al. Statistical correlation analysis of strong earthquakes and ionospheric electron density anomalies as observed by CSES-01[J]. II Nuovo Cimento della Societa Italiana di Fisica, C. Geophysics and space physics, 2021, 44(4-5): 119. [22] 张学民, 申旭辉. 地震-电离层圈层耦合机理研究进展及问题思考[J]. 地震科学进展, 2022, 52(5): 193-202. ZHANG Xue-min, SHEN Xu-hui. The development in seismo-ionospheric coupling mechanism[J]. Progress in Earthquake Sciences, 2022, 52(5): 193-202 (in Chinese). [23] Hayakawa M. Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment[J]. Recent Research Developments in Geophysics, 2004, 6: 81-112. [24] 丁鉴海, 申旭辉, 潘威炎, 等. 地震电磁前兆研究进展[J]. 电波科学学报, 2006, 21(5): 791-801. DING Jian-hai, SHEN Xu-hui, PAN Wei-yan, et al. Seismo-electromagnetism precursor research progress[J]. Chinese Journal of Radio Science, 2006, 21(5): 791-801 (in Chinese). [25] Pulinets S, Boyarchuk K. Ionospheric precursors of earthquakes[M]. Berlin: Springer-Verlag, 2004. [26] Pulinets S, Ouzounov D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model: An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 371-382. [27] Wu L X, Qin K, Liu S J. GEOSS-based thermal parameters analysis for earthquake anomaly recognition[J]. Proceeding of the IEEE, 2012, 100(10): 2891-2907. [28] 徐志国, 梁姗姗, 张广伟, 等. 2021年5月22日青海玛多MS7.4地震发震构造分析[J]. 地球物理学报, 2021, 64(8): 2657-2670. XU Zhi-guo, LIANG Shan-shan, ZHANG Guang-wei, et al. Analysis of seismogenic structure of Madoi, Qinghai MS7.4 earthquake on May 22, 2021[J]. Chinese Journal of Geophysics, 2021, 64(8): 2657-2670 (in Chinese). [29] 吕苗苗, 常利军, 鲁来玉, 等. 2021年青海玛多MS7.4地震余震序列震源机制解及其发震构造特征[J]. 地球物理学报, 2022, 65(6): 1991-2005. LÜ Miao-miao, CHANG Li-jun, LU Lai-yu, et al. Focal mechanism solutions of the aftershocks of the 2021 Qinghai Madoi MS7.4 earthquake and its seismogenic structure characteristics[J]. Chinese Journal of Geophysics, 2022, 65(6): 1991-2005 (in Chinese). [30] 潘家伟, 白明坤, 李超, 等. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造[J]. 地质学报, 2021, 95(6): 1655-1670. PAN Jia-wei, BAI Ming-kun, LI Chao, et al. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) MS7.4 earthquake[J]. Acta Geologica Sinica, 2021, 95(6): 1655-1670 (in Chinese). [31] 杨牧萍, 钱庚, 张学民, 等. 利用张衡一号卫星电场数据研究吉林松原、 河北唐山MS5.1地震前后空间电场时空演化特征[J]. 大地测量与地球动力学, 2022, 42(11): 1161-1165. YANG Mu-ping, QIAN Geng, ZHANG Xue-min, et al. Spatio-temporal evolution of electric field pre- and post-earthquakes based on the CSES satellite: MS5.1 earthquakes in Songyuan, Jilin Province and Tangshan, Hebei Province[J]. Journal of Geodesy and Geodynamics, 2022, 42(11): 1161-1165 (in Chinese). [32] 杜晓辉. 空间电磁多参量强震应用研究[D]. 北京: 中国地震局地震预测研究所, 2022. DU Xiao-hui. Application of strong earthquake research based on multiple parameters of space electromagnetism[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2022 (in Chinese). [33] 郑治真, 沈萍, 杨选辉, 等. 小波变换及其MATLAB工具的应用[M]. 北京: 地震出版社, 2001. ZHENG Zhi-zhen, SHEN Ping, YANG Xuan-hui, et al. Wavelet transform and its application of MATLAB tool[M]. Beijing: Seismological Press, 2001 (in Chinese). [34] 赵玉红, 苏维刚, 冯丽丽, 等. 2021年青海玛多MS7.4地震前大武台地电场优势方位角异常特征分析[J]. 地震学报, 2023, 45(1): 76-83. ZHAO Yu-hong, SU Wei-gang, FENG Li-li, et al. Characteristics of the dominant azimuth anomalies of geoelectric field at Dawu station before MS7.4 Maduo, Qinghai earthquake in 2021[J]. Acta Seismologica Sinica, 2023, 45(1): 76-83 (in Chinese). [35] 解孟雨, 王月, 李纲, 等. 2021年5月22日青海玛多MS7.4地震总结[J]. 地震地磁观测与研究, 2021, 42(6): 181-197. XIE Meng-yu, WANG Yue, LI Gang, et al. Summary of Maduo MS7.4 earthquake in Qinghai on May 22, 2021[J]. Seismological and Geomagnetic Observation and Research, 2021, 42(6): 181-197 (in Chinese). [36] 李军辉, 姜楚峰, 冯丽丽, 等. 2021年5月22日青海玛多7.4级地震前地磁日变化异常分析[J]. 四川地震, 2021(4): 7-11. LI Jun-hui, JIANG Chu-feng, FENG Li-li, et al. Analysis on geomagnetic diurnal variation anomaly before the MS7.4 Maduo earthquake[J]. Earthquake Research in Sichuan, 2021(4): 7-11 (in Chinese). [37] 冯丽丽, 管贻亮, 樊文杰, 等. 2020年10月15日地磁垂直强度极化异常与玛多M7.4地震[J]. 高原地震, 2021, 33(4): 1-6. FENG Li-li, GUAN Yi-liang, FAN Wen-jie, et al. Geomagnetic vertical component polarization anomaly in October 15th 2020 before Maduo M7.4 earthquake[J]. Plateau Earthquake Research, 2021, 33(4): 1-6 (in Chinese). [38] 钟骏, 王博, 周志华, 等. 2021年青海玛多MS7.4地震前地下流体异常特征分析[J]. 中国地震, 2021, 37(3): 574-585. ZHONG Jun, WANG Bo, ZHOU Zhi-hua, et al. Analysis on anomaly characteristics of underground fluid before 2021 Maduo MS7.4 earthquake in Qinghai Province[J]. Earthquake Research in China, 2021, 37(3): 574-585 (in Chinese). [39] 苏维刚, 刘磊, 孙玺皓. 玛多7.4级地震和门源6.9级地震前佐署地下流体异常特征分析[J]. 地震工程学报, 2022, 44(3): 700-706. SU Wei-gang, LIU Lei, SUN Xi-hao. Characteristics of underground fluid anomalies in Zuoshu station before Maduo MS7.4 and Menyuan MS6.9 earthquakes[J]. China Earthquake Engineering Journal, 2022, 44(3): 700-706 (in Chinese). [40] 刘磊, 张朋涛, 苏维刚, 等. 2021年5月22日青海玛多M7.4地震前共和水温异常分析研究[J]. 地震工程学报, 2021, 43(4): 860-867. LIU Lei, ZHANG Peng-tao, SU Wei-gang, et al. Anomalies of water temperature at Gonghe seismic station before the Maduo M7.4 earthquake on May 22, 2021[J]. China Earthquake Engineering Journal, 2021, 43(4): 860-867 (in Chinese). [41] 苏维刚, 刘磊, 袁伏全, 等. 2021年玛多MS7.4地震前玉树地震台井水温异常特征[J]. 地震学报, 2021, 43(3): 392-396. SU Wei-gang, LIU Lei, YUAN Fu-quan, et al. The anomaly characteristics of well water temperature in Yushu seismic station before the 2021 Maduo MS7.4 earthquake[J]. Acta Seismologica Sinica, 2021, 43(3): 392-396 (in Chinese). [42] 毛志强, 陈界宏, 李琪, 等. 2021年青海玛多MS7.4地震前变频磁扰动信号分析[J]. 地震地磁观测与研究, 2021, 42(S1): 43-45. MAO Zhi-qiang, CHEN Jie-hong, LI Qi, et al. Frequency conversion magnetic disturbance signal before Qinghai Maduo MS7.4 earthquake on May 22, 2021[J]. Seismological and Geomagnetic Observation and Research, 2021, 42(S1): 43-45 (in Chinese). [43] 王淑艳, 田辉, 马克祥, 等. 青海玛多MS7.4地震前LURR与OLR短临异常关联性研究[J]. 地震工程学报, 2021, 43(4): 847-852+859. WANG Shu-yan, TIAN Hui, MA Ke-xiang, et al. Correlation between short-term and imminent anomalies of LURR and OLR before the Maduo MS7.4 earthquake in Qinghai Province, 2021[J]. China Earthquake Engineering Journal, 2021, 43(4): 847-852+859 (in Chinese). [44] 张学民, 申旭辉, 刘静, 等. 多地球物理场观测的玉树地震孕育过程分析[J]. 遥感学报, 2018, 22(S1): 56-63. ZHANG Xue-min, SHEN Xu-hui, LIU Jing, et al. Analysis on the Yushu earthquake preparation process based on multi-geophysical field observations[J]. Journal of Remote Sensing, 2018, 22(S1): 56-63 (in Chinese). [45] 刘超, 许力生, 陈运泰. 2010年4月14日青海玉树地震快速矩张量解[J]. 地震学报, 2010, 32(3): 366-368. LIU Chao, XU Li-sheng, CHEN Yun-tai. Quick moment tensor solution for 14 April 2010 Yushu, Qinghai, earthquake[J]. Acta Seismologica Sinica, 32(3): 366-368 (in Chinese). [46] 姚远, 李琪, 姚休义, 等. 云南景谷MS6.6地震前地磁ULF异常信号变化[J]. 华北地震科学, 2018, 36(4): 49-54. YAO Yuan, LI Qi, YAO Xiu-yi, et al. Anomalies of ULF magnetic field variations prior to the Jinggu MS6.6 earthquake[J]. North China Earthquake Sciences, 2018, 36(4): 49-54 (in Chinese). [47] 路畅, 周晓成, 李营, 等. 玛多MS7.4地震地表破裂带与东昆仑断裂温泉的水文地球化学特征[J]. 地震地质, 2021, 43(5): 1101-1126. LU Chang, ZHOU Xiao-cheng, LI Ying, et al. Hydrogeochemical characteristics of groundwater in the surface rupture zone of Madoi MS7.4 earthquake and hot springs in the east Kunlun Fault[J]. Seismology and Geology, 2021, 43(5): 1101-1126 (in Chinese). |