[1] 陈颙, 陈龙生, 于晟. 城市地球物理学发展展望[J]. 大地测量与地球动力学, 2003, 23(4): 1-4. CHEN Yong, CHEN Long-sheng, YU Sheng. Urban geophysics: a new discipline of earth science[J]. Journal of Geodesy and Geodynamics, 2003, 23(4): 1-4 (in Chinese). [2] 王伟君, 陈凌, 王一博, 等. 光纤振动传感之二: 基于散射或透射光的本征传感及其地震学应用[J]. 地球与行星物理论评, 2022, 53(2): 119-137. WANG Wei-jun, CHEN Ling, WANG Yi-bo, et al. Fiber-optic vibration sensing?II: Intrinsic sensing with scattered or transmitted light and their seismological applications[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(2): 119-137 (in Chinese). [3] Cueto M, Olona J, Fernández-Viejo G, et al. Karst-induced sinkhole detection using an integrated geophysical survey: A case study along the Riyadh metro line 3 (Saudi Arabia)[J]. Near Surface Geophysics, 2018, 16(3): 270-281. [4] Zhang Y, Romanelli F, Vaccari F, et al. Seismic hazard maps based on Neo-deterministic seismic hazard assessment for China seismic experimental site and adjacent areas[J]. Engineering Geology, 2021, 291: 106208. [5] 杨文采, 田钢, 夏江海, 等. 华南丘陵地区城市地下空间开发利用前景[J]. 中国地质, 2019, 46(3): 447-454. YANG Wen-cai, TIAN Gang, XIA Jiang-hai, et al. The prospect of exploitation and utilization of urban underground space in hilly areas of South China[J]. Geology in China, 2019, 46(3): 447-454 (in Chinese). [6] Bruno P P G, Rapolla A. Study of the sub-surface structure of Somma-Vesuvius (Italy) by seismic reflection data[J]. Journal of Volcanology and Geothermal Research, 1999, 92(3-4): 373-387. [7] Azwin I N, Saad R, Nordiana M. Applying the Seismic refraction tomography for site characterization[J]. APCBEE Procedia, 2013, 5: 227-231. [8] Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7): L07614. [9] Feng J K, Yao H J, Poil P, et al. Depth variations of 410 km and 660 km discontinuities in eastern North China Craton revealed by ambient noise interferometry[J]. Geophysical Research Letters, 2017, 44(16): 8328-8335. [10] Feng J K, Yao H J, Wang Y, et al. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry[J]. Nature Communications, 2021, 12(1): 2531. [11] Qiu H R, Ben-Zion Y, Ross Z E, et al. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array[J]. Geophysical Journal International, 2017, 209(3): 1369-1388. [12] Zhang Z, Deng Y F, Qiu H R, et al. High-resolution imaging of fault zone structure along the creeping section of the Haiyuan fault, NE Tibet, from data recorded by dense seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(9): e2022JB024468. [13] 王伟君, 刘澜波, 陈棋福, 等. 应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J]. 地球物理学报, 2009, 52(6): 1515-1525. WANG Wei-jun, LIU Lan-bo, CHEN Qi-fu, et al. Applications of microtremor H/V spectral ratio and array techniques in assessing the site effect and near surface velocity structure[J]. Chinese Journal of Geophysics, 2009, 52(6): 1515-1525 (in Chinese). [14] Bao F, Li Z W, Yuen D A, et al. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Physics of the Earth and Planetary Interiors, 2018, 281: 46-54. [15] 彭菲, 王伟君, 寇华东. 三河—平谷地区地脉动H/V谱比法探测: 场地响应、 浅层沉积结构及其反映的断层活动[J]. 地球物理学报, 2020, 63(10): 3775-3790. PENG Fei, WANG Wei-jun, KOU Hua-dong. Microtremer H/V spectral ratio investigation in the Sanhe-Pinggu area: Site responses, shallow sedimentary structure, and fault activity revealed[J]. Chinese Journal of Geophysics, 2020, 63(10): 3775-3790 (in Chinese). [16] Foti S, Parolai S, Albarello D, et al. Application of surface-wave methods for seismic site characterization[J]. Surveys in Geophysics, 2011, 32(6): 777-825. [17] 夏江海. 高频面波方法[M]. 北京: 中国地质大学出版社, 2015. XIA Jiang-hai. Gaopin mianbo fangfa[M]. Beijing: China University of Geosciences Press, 2015 (in Chinese). [18] Huang Y C, Yao H J, Huang B S, et al. Phase velocity variation at periods of 0.5-3 seconds in the Taipei Basin of Taiwan from correlation of ambient seismic noise[J]. Bulletin of the Seismological Society of America, 2010, 100(5A): 2250-2263. [19] Lin F C, Li D Z, Clayton R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4): Q45-Q56. [20] Yao H J, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744. [21] Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1269. [22] Lindsey N J, Martin E R. Fiber-optic seismology[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 309-336. [23] Lellouch A, Biondi B L. Seismic applications of downhole DAS[J]. Sensors, 2021, 21(9): 2897. [24] Mateeva A, Lopez J, Potters H, et al. Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling[J]. Geophysical Prospecting, 2014, 62(4): 679-692. [25] Dou S, Lindsey N, Wagner A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study[J]. Scientific Reports, 2017, 7(1): 11620. [26] 宋政宏, 曾祥方, 徐善辉, 等. 分布式光纤声波传感系统在近地表成像中的应用Ⅰ: 主动源高频面波[J]. 地球物理学报, 2020, 63(2): 532-540. SONG Zheng-hong, ZENG Xiang-fang, XU Shan-hui, et al. Distributed Acoustic Sensing for imaging shallow structure Ⅰ: active source survey[J]. Chinese Journal of Geophysics, 2020, 63(2): 532-540 (in Chinese). [27] 雷宇航, 尹扶, 洪鹤庭, 等. 基于MF-J变换的DAS观测高阶面波提取和浅地表结构成像[J]. 地球物理学报, 2021, 64(12): 4280-4291. LEI Yu-hang, YIN Fu, HONG He-ting, et al. Shallow structure imaging using higher-mode Rayleigh waves based on F-J transform in DAS observation[J]. Chinese Journal of Geophysics, 2021, 64(12): 4280-4291 (in Chinese). [28] Yu C Q, Zhan Z W, Lindsey N J, et al. The potential of DAS in teleseismic studies: Insights from the goldstone experiment[J]. Geophysical Research Letters, 2019, 46(3): 1320-1328. [29] Jousset P. Illuminating Earth's faults[J]. Science, 2019, 366(6469): 1076-1077. [30] Song Z H, Zeng X F, Xie J, et al. Sensing shallow structure and traffic noise with fiber-optic internet cables in an Urban area[J]. Survey in Geophysics, 2021, 42(6): 1401-1423. [31] Ye Z P, Wang W J, Wang X, et al. Traffic flow and vehicle speed monitoring with object detection method from the roadside distributed acoustic sensing array[J]. Frontiers in Earth Science, 2022, 10: 992571. [32] Nishimura T, Emoto K, Nakahara H, et al. Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system[J]. Scientific Reports, 2021, 11(1): 6319. [33] Lior I, Sladen A, Rivet D, et al. On the detection capabilities of underwater distributed acoustic sensing[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB020925. [34] Hudson T S, Baird A F, Kendall J M, et al. Distributed Acoustic Sensing (DAS) for natural microseismicity studies: A case study from Antarctica[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2020JB021493. [35] Wang J N, Wu G X, Chen X F. Frequency-bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3708-3723. [36] Zeng X F, Lancelle C, Thurber C, et al. Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at garner valley, California[J]. Bulletin of the Seismological Society of America, 2017, 107(2): 603-610. [37] Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 2019, 9(1): 1328. [38] 王宝善, 曾祥方, 宋政宏, 等. 利用城市通信光缆进行地震观测和地下结构探测[J]. 科学通报, 2021, 66(20): 2590-2595. WANG Bao-shan, ZENG Xiang-fang, SONG Zheng-hong, et al. Seismic observation and subsurface imaging using an urban telecommunication optic-fiber cable[J]. Chinese Science Bulletin, 2021, 66(20): 2590-2595 (in Chinese). [39] 林融冰, 包丰, 谢军, 等. 光缆布设方式对DAS主、 被动源记录的影响[J]. 地球物理学报, 2022, 65(10): 4087-4098. LIN Rong-bing, BAO Feng, XIE Jun, et al. The influence of cable installment on DAS active and passive source records[J]. Chinese Journal of Geophysics, 2022, 65(10): 4087-4098 (in Chinese). [40] Park C B, Miller R D, Xia J. Multichannel analysis of surface waves[J]. Geophysics, 1999, 64(3): 800-808. [41] Vantassel J P, Cox B R. SWprocess: A workflow for developing robust estimates of surface wave dispersion uncertainty[J]. Journal of Seismology, 2022, 26(4): 731-756. [42] Prieto G A, Lawrence J F, Beroza G C. Anelastic Earth structure from the coherency of the ambient seismic field[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B7): B07303. [43] Sánchez-Sesma F J, Campillo M. Retrieval of the Green's function from cross correlation: The canonical elastic problem[J]. Bulletin of the Seismological Society of America, 2006, 96(3): 1182-1191. [44] Herrmann R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6): 1081-1088. [45] Brocher T M. Empirical relations between elastic wavespeeds and density in the Earth's crust[J]. Bulletin of the Seismological Society of America, 2005, 95(6): 2081-2092. [46] Withers M, Aster R C, Young C, et al. A comparison of select trigger algorithms for automated global seismic phase and event detection[J]. Bulletin of the Seismological Society of America, 1998, 88(1): 95-106. [47] FEMA. NEHRP recommended seismic provisions for new buildings and other structures[S]. Washington, 2004. |