[1] Van Der Woerd J, Ryerson F J, Tapponnier P, et al. Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China)[J]. Geology, 1998, 26(8): 695-698. [2] Van Der Woerd J, Ryerson F J, Tapponnier P, et al. Uniform slip-rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics[J]. Geophysical Research Letters, 2000, 27(16): 2353-2356. [3] Van Der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology[J]. Geophysical Journal International, 2002, 148(3): 356-388. [4] Zhao D, Qu C, Bürgmann R, et al. Large-scale crustal deformation, slip-rate variation, and strain distribution along the Kunlun fault (Tibet) From Sentinel-1 InSAR observations (2015—2020)[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022892. [5] Zhu L, Ji L, Liu C. Interseismic slip rate and locking along the Maqin-Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703. [6] 李陈侠, 袁道阳, 杨虎, 等. 东昆仑断裂带东段分支断裂阿万仓断裂晚第四纪构造活动特征[J]. 地震地质, 2016, 38(1): 44-64. LI Chen-xia, YUAN Dao-yang, YANG Hu, et al. The tectonic activity characteristics of Awancang fault in the late Quaternary, the sub-strand of the Eastern Kunlun fault[J]. Seismology and Geology, 2016, 38(1): 44-64 (in Chinese). [7] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. XU Xi-wei, WU Xi-yan, YU Gui-hua, et al. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 2017, 39(2): 219-275 (in Chinese). [8] Kirby E, Harkins N, Wang E, et al. Slip rate gradients along the eastern Kunlun fault[J]. Tectonics, 2007, 26(2): 1-16. [9] Lin A, Guo J. Nonuniform slip rate and millennial recurrence interval of large earthquakes along the Eastern segment of the Kunlun fault, Northern Tibet [J]. Bulletin of the Seismological Society of America, 2008, 98(6): 2866-2878. [10] Harkins N, Kirby E. Fluvial terrace riser degradation and determination of slip rates on strike-slip faults: An example from the Kunlun fault, China[J]. Geophysical Research Letters, 2008, 35(5): L05406. [11] Harkins N, Kirby E, Shi X, et al. Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia[J]. Lithosphere, 2010, 2(4): 247-266. [12] Dolan J F, Meade B J. A comparison of geodetic and geologic rates prior to large strike-slip earthquakes: A diversity of earthquake-cycle behaviors?[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(12): 4426-4436. [13] Elliott J R, Walters R J, Wright T J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7: 13844. [14] Weiss J R, Walters R J, Morishita Y, et al. High-resolution surface velocities and strain for Anatolia from Sentinel-1 InSAR and GNSS data[J]. Geophysical Research Letters, 2020, 47(17): e2020GL087376. [15] Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517: 1-13. [16] 董彦芳, 洪顺英, 孟国杰. 基于PSInSAR的2008年汶川MS8.0地震震后形变场特征[J]. 地震, 2018, 38(2): 95-106. DONG Yan-fang, HONG Shun-ying, MENG Guo-jie. Post-seismic surface deformation of the 2008 Wenchuan MS8.0 earthquake based on PSInSAR[J]. Earthquake, 2018, 38(2): 95-106 (in Chinese). [17] Lyons S, Sandwell D. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2047. [18] Qiao X, Zhou Y, Zhang P. Along-strike variation in fault structural maturity and seismic moment deficits on the Yushu-Ganzi-Xianshuihe fault system revealed by strain accumulation and regional seismicity[J]. Earth and Planetary Science Letters, 2022, 596: 117799. [19] Hussain E, Hooper A, Wright T J, et al. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(12): 9000-9019. [20] Hussain E, Wright T J, Walters R J, et al. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault[J]. Nature Communications, 2018, 9: 1392. [21] Diao F, Xiong X, Wang R, et al. Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model[J]. Geophysical Research Letters, 2019, 46(5): 2524-2533. [22] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB0 18774. [23] Liang S, Gan W, Shen C, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732. [24] Rosen P A, Gurrola E, Sacco G F, et al. The InSAR scientific computing environment[C]. EUSAR: 9th European conference on synthetic aperture radar. VDE, 2012: 730-733. [25] Shen Z K, Wang M, Zeng Y, et al. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 2015, 105(4): 2117-2127. [26] 李陈侠, 徐锡伟, 闻学泽, 等. 东昆仑断裂带中东部地震破裂分段性与走滑运动分解作用[J]. 中国科学: 地球科学, 2011, 41(9): 1295-1310. LI Chen-xia, XU Xi-wei, WEN Xue-ze, et al. Rupture segmentation and slip partitioning of the mid-eastern part of the Kunlun Fault, north Tibetan Plateau[J]. Science China Earth Sciences, 2011, 41(9): 1295-1310 (in Chinese). [27] Savage J C, Burford R O. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845. [28] Goodman J, Weare J. Ensemble samplers with affine invariance[J]. Communications in Applied Mathematics and Computational Science, 2010, 5(1): 65-80. [29] Zheng W J, Liu X W, Yu J X, et al. Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in the western Qinling mountains, NW China[J]. Tectonophysics, 2016 687: 1-13. [30] Shan B, Xiong X, Wang R, et al. Stress evolution and seismic hazard on the Maqin-Maqu segment of East Kunlun Fault zone from co-, post- and interseismic stress changes[J]. Geophysical Journal International, 2015, 200(1): 244-253. [31] 华俊, 赵德政, 单新建, 等. 2021年青海玛多MW7.3地震InSAR的同震形变场、 断层滑动分布及其对周边区域的应力扰动[J]. 地震地质, 2021, 43(3): 677-691. HUA Jun, ZHAO De-zheng, SHAN Xin-jian et al. Coseismic deformation field, slip distribution and coulomb stress disturbance of the 2021 MW7.3 Maduo earthquake using Sentinel-1 InSAR observations[J]. Seismology and Geology, 2021, 43(3): 677-691 (in Chinese). |