[1] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、 地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. ZOU Cai-neng, DONG Da-zhong, WANG She-jiao, et al. Geological characteristics formation mechanism and resource potential of shale gas in China[J]. Petroleum and Development, 2010, 37(6): 641-653 (in Chinese). [2] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、 挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. ZOU Cai-neng, DONG Da-zhong, WANG Yu-man, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178 (in Chinese). [3] Schultz R, Skoumal R J, Brudzinski M R, et al. Hydraulic fracturing induced seismicity[J]. Reviews of Geophysics, 2020, 58: e2019RG000695. [4] 王志伟, 王小龙, 马胜利, 等. 重庆荣昌地区注水诱发地震的时空分布特征[J]. 地震地质, 2018, 40(3): 523-538. WANG Zhi-wei, WANG Xiao-long, MA Sheng-li, et al. Detailed temporal-spatial distribution of induced earthquakes by water injection in Rongchang, Chongqing[J]. Seismology and Geology, 2018, 40(3): 523-538 (in Chinese). [5] Sun X, Yang P, Zhang Z. A study of earthquakes induced by water injection in the Changning salt mine area, SW China[J]. Journal of Asian Earth Sciences, 2017, 136: 102-109. [6] Lei X L, Huang D J, Su J R, et al. Fault reactivation and earthquakes with magnitudes of up to MW4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China[J]. Scientific Reports, 2017, 7(1): 7971. [7] 巫芙蓉, 闫媛媛, 尹陈. 页岩气微地震压裂实时监测技术以四川盆地蜀南地区为例[J]. 天然气工业, 2016, 36(11): 46-50. WU Fu-rong, YAN Yuan-yuan, YIN Chen. Real-time microseismic monitoring technology for hydraulic fracturing in shale gas reservoirs: A case study from the Southern Sichuan Basin[J]. Natural Gas Industry, 2016, 36(11): 46-50 (in Chinese). [8] Lei X L, Wang Z W, Su J R. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismological Research Letters, 2019, 90(3): 1099-1110. [9] Lei X L, Su J R, Wang Z W. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Sciences China: Earth Sciences, 2020, 63(11): 1633-1660. [10] Chen H C, Meng X B, Niu F L, et al. Microseismic monitoring of stimulating shale gas reservoir in SW China: 2. spatial clustering controlled by the preexisting faults and fractures[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1659-1672. [11] Maxwell S C, Zhang F, Damjanac B, et al. Geomechanical modeling of induced seismicity resulting from hydraulic fracturing[J]. The Leading Edge, 2015, 34(6): 678-683. [12] Skoumal R J, Brudzinski M R, Currie B S. Earthquakes induced by hydraulic fracturing in Poland township, Ohio[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 189-197. [13] Eyre T S, Eaton D W, Garagash D I, et al. The role of aseismic slip in hydraulic fracturing-induced seismicity[J]. Science Advances, 2019, 5(8): eaav7172. [14] López-Comino J A, Cesca S, Jarosawski J, et al. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland[J]. Science Reports, 2018, 8(1): 8653. [15] Bao X W, Eaton D W. Fault activation by hydraulic fracturing in western Canada[J]. Science, 2016, 354(6318): 1406-1409. [16] 唐茂云, 李翠平, 王小龙, 等. 重庆涪陵焦石坝页岩气开采诱发地震加密观测[J]. 国际地震动态, 2018(8): 139-140. TANG Mao-yun, LI Cui-ping, WANG Xiao-long, et al. Encrypt observation of shale gas exploitation induced by gas shale in Fuling, Chongqing[J]. Recent Developments in World Seismology, 2018(8): 139-140 (in Chinese). [17] 赵策, 左可桢, 赵翠萍. 2019年6月17日四川长宁6.0级地震序列活动特征[J]. 地震, 2020, 40(3): 28-40. ZHAO Ce, ZUO Ke-zhen, ZHAO Cui-ping. Seismicity characteristics of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Earthquake, 2020, 40(3): 28-40 (in Chinese). [18] 曾宪伟, 龙锋, 任家琪, 等. 2019年6月17日长宁MS6.0地震前后b值时空变化分析[J]. 地震, 2020, 40(3): 1-14. ZENG Xian-wei, LONG Feng, REN Jia-qi, et al. Spatial and temporal variation of b value before and after the Changning MS6.0 earthquake on June 17, 2019[J]. Earthquake, 2020, 40(3): 1-14 (in Chinese). [19] Shapiro S A, Dinske C. Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing[J]. Geophysical Prospecting, 2009, 57(2): 301-310. [20] Shapiro S A. Fluid-induced seismicity[M]. Cambridge: Cambridge University Press, 2015. [21] Parotidis M, Rothert E, Shapiro S A. Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, Central Europe[J]. Geophysical Research Letters, 2003, 30(20): 1182-1200. [22] Segall P, Lu S. Injection-induced seismicity: Poroelastic and earthquake nucleation effects[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(7): 5082-5103. [23] Deng K, Liu Y, Harrington R M. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence[J]. Geophysical Research Letters, 2016, 43(16): 8482-8491. [24] Atkinson G M, Eaton D W, Igonin N. Developments in understanding seismicity triggered by hydraulic fracturing[J]. Nature Reviews Earth & Environment, 2020, 1(5): 264-277. [25] Bhattacharya P, Viesca R C. Fluid-induced aseismic fault slip outpaces pore-fluid migration[J]. Science, 2019, 364(6439): 464-468. [26] Davis S D, Frohlich C. Did (or Will) fluid injection cause earthquakes-criteria for a rational assessment[J]. Seismological Research Letters, 1993, 64(3-4): 207-224. [27] Dahm T, Cesca S, Hainzl S, et al. Discrimination between induced, triggered, and natural earthquakes close to hydrocarbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2491-2509. [28] Frohlich C, Deshon H, Stump B, et al. A historical review of induced earthquakes in Texas[J]. Seismological Research Letters, 2016, 87(4): 1022-1038. [29] Verdon J P, Baptie B J, Bommer J J, et al. An improved framework for discriminating seismicity induced by industrial activities from natural earthquakes[J]. Seismological Research Letters, 2019, 90(4): 1592-1611. [30] Simone C, Alexander R, Torsten D. Discrimination of induced seismicity by full moment tensor inversion and decomposition[J]. Journal of Seismology, 2013, 17(1): 147-163. [31] Bommer J J, Oates S, Cepeda M J, et al. Control of hazard due to seismicity induced by a hot fractured rock geothermal project[J]. Engineering Geology, 2006, 83(4): 287-306. [32] Zhang F S, Yin Z R, Chen Z W, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing microseismic analysis and geomechanical modeling[J]. Society of Petroleum Engineers, 2020, 25(2): 692-711. [33] McClure M W, Horne R N. Investigation of injection-induced seismicity using a coupled fluid flow and rate/state friction model[J]. Geophysics, 2011, 76(6): WC181-WC198. [34] Clarke H, Verdon J P, Kettlety T, et al. Real-time imaging, forecasting, and management of human-induced seismicity at Preston New Road, Lancashire, England[J]. Seismological Research Letters, 2019, 90(5): 1902-1915. [35] Mignan A, Broccardo M, Wiemer S, et al. Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections[J]. Scientific Reports, 2017, 7(1): 13607. [36] Lei X, Yu G, Ma S, et al. Earthquakes induced by water injection at ~3 km depth within the Rongchang gas field, Chongqing, China[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B10): B10310. [37] McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research, 2014, 119(2): 1008-1019. [38] Ellsworth W L, Giardini D, Townend J. Triggering of the Pohang, Korea, earthquake (MW5.5) by enhanced geothermal system stimulation[J]. Seismological Research Letters, 2019, 90(5): 1844-1858. [39] 孙可明, 张树翠. 水力压裂诱发断层活化机理分析[J]. 自然灾害学报, 2018, 27(1): 33-39. SUN Ke-ming, ZHANG Shu-cui. Analysis of fault activation mechanism induced by hydraulic fracture[J]. Journal of Natural Disasters, 2018, 27(1): 33-39 (in Chinese). [40] 张建勇, 崔振东, 周健, 等. 流体注入工程诱发断层活化的风险评估方法[J]. 天然气工业, 2018, 38(8): 33-40. ZHANG Jian-yong, CUI Zhen-dong, ZHOU Jian, et al. Risk assessment methods for fault reactivation induced by fluid injection[J]. Natural Gas Industry, 2018, 38(8): 33-40 (in Chinese). [41] 马洪芬, 贾红战, 张英山, 等. 断层附近油井水力压裂可行性探讨与措施[J]. 断块油气田, 2005, 12(6): 62-64. MA Hong-fen, JIA Hong-zhan, ZHANG Ying-shan. et al. Study on hydraulic fracturing near faults[J]. Fault-Block Oil and Gas Field, 2005, 12(6): 62-64 (in Chinese). [42] 金维浚, 张衡, 张文辉, 等. 微地震监测技术及应用[J]. 地震, 2013, 33(4): 84-96. JIN Wei-jun, ZHANG Heng, ZHANG Wen-hui, et al. Technology and application of micro-seismic monitoring[J]. Earthquake, 2013, 33(4): 84-96 (in Chinese). [43] 刘振武, 撒利明, 巫芙蓉, 等. 中国石油集团非常规油气微地震监测技术现状及发展方向[J]. 石油地球物理勘探, 2013, 48(5): 843-853. LIU Zhen-wu, SA Li-ming, WU Fu-rong, et al. Microseismic monitor technology status for unconventional resource E&P and its future development in CNPC[J]. Oil Geophysical Prospecting, 2013, 48(5): 843-853. [44] Zeng X F, Zhang H J, Zhang X, et al. Surface microseismic monitoring of hydraulic fracturing of a shale-gas reservoir using short-period and broadband seismic sensors[J]. Seismological Research Letters, 2014, 85(3): 668-677. [45] Baan M V D, Eaton D, Dusseault M. Microseismic monitoring developments in hydraulic fracture stimulation[M]∥Jeffrey R, Mclennan J, Bunger A. Effective and sustainable hydraulic fracturing. London: Intechopen, 2013: 439-466. [46] 李政, 常旭, 姚振兴, 等. 微地震方法的裂缝监测与储层评价[J]. 地球物理学报, 2019, 62(2): 707-719. LI Zheng, CHANG Xu, YAO Zhen-xing, et al. Fracture monitoring and reservoir evaluation by micro-seismic method[J]. Chinese Journal of Geophysics, 2019, 62(2): 707-719 (in Chinese). [47] 崔庆辉. 水力压裂微地震监测技术及发展综述[J]. 科技信息, 2014(6): 193. CUI Qing-hui. Review on microseismic monitoring technology and development of hydraulic fracturing[J]. Science & Technology Information, 2014(6): 193 (in Chinese). [48] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、 挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. ZOU Cai-neng, DONG Da-zhong, WANG Yu-man, et al. Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701 (in Chinese). [49] 李凡华, 乔磊, 田中兰, 等. 威远页岩气水平井压裂套变原因分析[J]. 石油钻采工艺, 2019, 41(6): 734-738. LI Fan-hua, QIAO Lei, TIAN Zhong-lan, et al. Analysis on the causes of casing deformation in fractured shale-gas horizontal wells of Weiyuan Block[J]. Oil Drilling & Production Technology, 2019, 41(6): 734-738 (in Chinese). [50] 马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563. MA Xin-hua, LI Xin-zhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563 (in Chinese). [51] Tan Y Y, Hu J, Zhang H J, et al. Hydraulic fracturing induced seismicity in the Southern Sichuan Basin due to fluid diffusion inferred from seismic and injection data analysis[J]. Geophysical Research Letters, 2020, 47(4): e2019GL084885. [52] 易桂喜, 龙锋, 梁明剑, 等. 四川盆地荣县—威远—资中地区发震构造几何结构与构造变形特征: 基于震源机制解的认识和启示[J]. 地球物理学报, 2020, 63(9): 3275-3291. YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Geometry and tectonic deformation of seismogenic structures in the Rongxian Weiyuan-Zizhong region, Sichuan Basin: Insights from focal mechanism solutions[J]. Chinese Journal of Geophysics, 2020, 63(9): 3275-3291 (in Chinese). [53] 孙凯, 孟国杰, 洪顺英, 等. 基于Sentinel-1A数据的四川长宁MS6.0地震同震形变场分析及断层滑动分布反演[J]. 地震, 2020, 40(3): 15-27. SUN Kai, MENG Guo-jie, HONG Shun-ying, et al. Coseismic deformation and fault slip inversion of the MS6.0 earthquake Changning, Sichuan Based on Sentinel-1A data[J]. Earthquake, 2020, 40(3): 15-27 (in Chinese). [54] Yang H F, Zhou P C, Fang N, et al. A shallow shock: The 25 February 2019 ML4.9 earthquake in the Weiyuan shale gas field in Sichuan, China[J]. Seismological Research Letters, 2020, 91(6): 3182-3194. [55] Sheng M, Chu R, Ni S, et al. Source parameters of three moderate size earthquakes in Weiyuan, China, and their relations to shale gas hydraulic fracturing[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(10): e2020JB019932. |