[1] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [2] Zhang Y F, Tan H B, Zhang W J, et al. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system[J]. Geochemistry International, 2015, 53(12): 1090-1106. [3] 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67(13): 1404-1420. LI Ying, CHEN Zhi, HU Le, et al. Advances in seismic fluid geochemistry and its application in earthquake forecasting[J]. Chinese Science Bulletin, 2022, 67(13): 1404-1420 (in Chinese). [4] Chen Z, Zhou X C, Du J G, et al. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan, China[J]. Natural Hazards and Earth System Science Discussions, 2015, 2(6): 1149-1156. [5]Okuyama Y, Funatsu T, Fujii T, et al. Mid-crustal fluid related to the Matsushiro earthquake swarm (1965—1967) in northern Central Japan: Geochemical reproduction[J]. Tectonophysics, 2016, 679(3): 61-72. [6] Walraevens K, Bakundukize C, Mtoni Y E, et al. Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi[J]. Journal of Geochemical Exploration, 2018, 188(3): 24-42. [7] 刘成龙, 王广才, 史浙明, 等. 云南硫磺洞温泉水文地球化学特征和成因分析[J]. 地震研究, 2020, 43(2): 278-286. LIU Cheng-long, WANG Guang-cai, SHI Zhe-ming, et al. Hydrogeochemical characteristic and formation of the Liuhuangdong spring in Yunnan Province[J]. Journal of Seismological Research, 2020, 43(2): 278-286 (in Chinese). [8] 李营, 方震, 张晨蕾, 等. 地震流体地球化学短临预测研究进展与展望[J]. 地震地质, 2023, 45(3): 593-621. LI Ying, FANG Zhen, ZHANG Chen-lei, et al. Research progress and prospect of seismic fluid geochemistry in short-imminent earthquake prediction[J]. Seismology and Geology, 2023, 45(3): 593-621 (in Chinese). [9] 周晓成, 王万丽, 李立武, 等. 金沙江—红河断裂带温泉气体地球化学特征[J]. 岩石学报, 2020, 36(7): 2197-2214. ZHOU Xiao-cheng, WANG Wan-li, LI Li-wu, et al. Geochemical features of hot spring gases in the Jinshajiang-Red River fault zone, Southeast Tibetan Plateau[J]. Acta Petrologica Sinica, 2020, 36(7): 2197-2214 (in Chinese). [10] 徐胜, 管芦峰, 张茂亮, 等. 青藏高原东缘鲜水河—安宁河断裂带深源气体释放[J]. 中国科学: 地球科学, 2022, 52(2): 291-308. XU Sheng, GUAN Lu-feng, ZHANG Mao-liang, et al. Degassing of deep-sourced CO2 from Xianshuihe-Anninghe fault zones in the eastern Tibetan Plateau[J]. Science China Earth Sciences, 2022, 65(1): 139-155 (in Chinese). [11] Du J G, Cheng W Z, Zhang Y L, et al. Helium and carbon isotopic compositions of thermal springs in the earthquake zone of Sichuan, Southwestern China[J]. Journal of Asian Earth Sciences, 2006, 26(5): 533-539. [12] Shi Z J, Shi Z M, Yin G, et al. Travertine deposits, deep thermal metamorphism and tectonic activity in the Longmenshan tectonic region, southwestern China[J]. Tectonophysics, 2014, 633(1): 156-163. [13] Tian J, Pang Z H, Liao D W, et al. Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau[J]. Applied Geochemistry, 2021, 131: 105036. [14] Wang E, Meng K, Su Z, et al. Block rotation: Tectonic response of the Sichuan basin to the southeastward growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang fault[J]. Tectonics, 2014, 33(5): 686-717. [15] 易桂喜, 闻学泽, 范军, 等. 由地震活动参数分析安宁河—则木河断裂带的现今活动习性及地震危险性[J]. 地震学报, 2004, 26(3): 294-303. YI Gui-xi, WEN Xue-ze, FAN Jun, et al. Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters[J]. Acta Seismologica Sinica, 2004, 26(3): 294-303 (in Chinese). [16] 白宪洲, 文龙, 王玉婷, 等. 四川省西昌盆地上三叠统白果湾组地球化学特征及其意义[J]. 中国地质调查, 2017, 4(2): 51-58. BAI Xian-zhou, WEN Long, WANG Yu-ting, et al. Geochemical characteristics and their implications of upper Triassic Baiguowan formation in Xichang Basin, Sichuan Province[J]. Geological Survey of China, 2017, 4(2): 51-58 (in Chinese). [17] Wu Q, Li H B, Chevalier M L, et al. Fluid influx promotes local strengthening of the creeping Xianshuihe fault, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(7): e2023JB026682. [18] Luo S, Yao H J, Wen J, et al. Apparent low-velocity belt in the shallow Anninghe fault zone in SW China and its implications for seismotectonics and earthquake hazard assessment[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025681. [19] 高岩. 离子色谱法测定PM2.5中水溶性无机阴离子[J]. 环境与可持续发展, 2015, 40(4): 220-221. GAO Yan. Determination of water-soluble anions in PM2.5 by ion chromatogram[J]. Environment and Sustainable Development, 2015, 40(4): 220-221 (in Chinese). [20] 刘汉彬, 金贵善, 李军杰, 等. 铀矿地质样品的稳定同位素组成测试方法[J]. 世界核地质科学, 2013, 30(3): 174-179. LIU Han-bin, JIN Gui- Shan, LI Jun-jie, et al. Determination of stable isotope composition in uranium geological samples[J]. World Nuclear Geoscience, 2013, 30(3): 174-179 (in Chinese). [21] 付翠轻, 崔彩芬, 靳睿杰, 等. ICP-MS测定地下水中22种微量元素含量[J]. 地下水, 2015(2): 173-174. FU Cui-qing, CUI Cai-fen, JIN Rui-jie, et al. Determination of 22 kinds of trace elements in groundwater by ICP-MS[J]. Underground Water, 2015(2): 173-174 (in Chinese). [22] 王衍鹏. Optima5300DV光谱定性和定量分析的化学计量学方法研究[D]. 南宁: 广西大学, 2011. WANG Yan-peng. Research on chemometrics methods of qualitative and quantitative spectral analysis with Optima5300DV[D]. Nanning: Guangxi University, 2011 (in Chinese). [23] Woith H, Wang R, Maiwald U. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake[J]. Chemical Geology, 2012, 339: 177-186. [24] Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. [25] 刘进达, 赵迎昌, 刘恩凯. 中国大气降水稳定同位素时-空分布规律探讨[J]. 勘察科学技术, 1997(3): 34-39. LIU Jin-da, ZHAO Ying-chang, LIU En-kai. Discussion on the stable isotope time-space distribution law of China atmosphere precipitation[J]. Survey Science and Technology, 1997(3): 34-39 (in Chinese). [26] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. [27] 于津生. 中国同位素地球化学研究[M]. 北京: 科学出版社, 1997. YU Jin-sheng. Research on isotope geochemistry in China[M]. Beijing: Science Press, 1997 (in Chinese). [28] Zhou X, Li C J, Ju X M, et al. Origin of subsurface brines in the Sichuan basin[J]. Groundwater, 1997, 35(1): 53-58. [29] Soto-Jiménez M F, Páez-Osuna F. Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlán harbor (SE gulf of California)[J]. Estuarine, Coastal and Shelf Science, 2001, 53(3): 259-274. [30]Giggenbach W F. Geothermal solute equilibria: Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12): 2749-2765. [31] 郑西来, 郭建青. 二氧化硅地热温标及其相关问题的处理方法[J]. 地下水, 1996, 18(2): 85-88. ZHENG Xi-lai, GUO Jian-qing. Silicon dioxide geothermometer and treatment of related problems[J]. Ground Water, 1996, 18(2): 85-88 (in Chinese). [32] 汪集旸, 黄少鹏. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质, 1990, 12(4): 351-363. WANG Ji-yang, HUANG Shao-peng. Compilation of heat flow data in the China continental area (2nd edition)[J]. Seismology and Geology, 1990, 12(4): 351-363 (in Chinese). [33] Kong W L, Huang L Y, Yao R, et al. Contemporary kinematics along the Xianshuihe-Xiaojiang fault system: Insights from numerical simulation[J]. Tectonophysics, 2022, 839: 229554. [34] Liu Y W, Ren H W, Wang B. Application of environmental isotopes and tracer techniques to seismic subsurface fluids[J]. Earth Science Frontiers, 2009, 16(1): 369-377. [35] Li C H, Zhou X C, Yan Y C, et al. Hydrogeochemical characteristics of hot springs and their short-term seismic precursor anomalies along the Xiaojiang fault zone, southeast Tibet Plateau[J]. Water, 2021, 13(19): 2638. [36] Andrén M, Stockmann G, Skelton A, et al. Coupling between mineral reactions, chemical changes in groundwater and earthquakes in Iceland[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(4): 2315-2337. [37] Skelton A, Claesson L L, Wästeby N, et al. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at 2 sites in northern Iceland: A review[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(3): 2702-2720. [38] Zhou X C, Liu L, Chen Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79: 17-26. [39] 周永胜, 何昌荣, 杨晓松. 中地壳韧性剪切带中的水与变形机制[J]. 中国科学(D辑), 2008, 38(7): 819-832. ZHOU Yong-sheng, HE Chang-rong, YANG Xiao-song. Water and deformation mechanism in ductile shear zone of middle crust[J]. Science in China (Series D), 2008, 38(7): 819-832 (in Chinese). [40] 宋娟, 周永胜. 断层带流体对断层强度和强震孕育的影响[J]. 国际地震动态, 2013(12): 5-16. SONG Juan, ZHOU Yong-sheng. Effect of the fluid to fault strength and strong earthquake gestation[J]. Recent Developments in World Seismology, 2013(12): 5-16 (in Chinese). [41] 卢显, 解孟雨, 张小涛, 等. 2020年5月18日云南巧家MS5.0地震总结[J]. 地震地磁观测与研究, 2020, 41(5): 153-167. LU Xian, XIE Meng-yu, ZHANG Xiao-tao, et al. About Qiaojia MS5.0 earthquake in Yunnan on May 18, 2020[J]. Seismological and Geomagnetic Observation and Research, 2020, 41(5): 153-167 (in Chinese). [42] 王光明, 吴中海, 刘昌伟, 等. 2022年1月2日宁蒗MS5.5地震序列重定位与发震构造分析[J]. 地震学报, 2022, 44(4): 581-593. WANG Guang-ming, WU Zhong-hai, LIU Chang-wei, et al. Relocation and seismogenic structure analysis of the MS5.5 Ninglang earthquake sequence on January 2, 2022[J]. Acta Seismologica Sinica, 2022, 44(4): 581-593 (in Chinese). [43] 曾泽, 蒋勇军, 吕现福, 等. 重庆雪玉洞洞穴滴水水文地球化学时空变化特征及其环境意义[J]. 环境科学, 2018, 39(6): 2641-2650. ZENG Ze, JIANG Yong-jun, LÜ Xian-fu, et al. Spatial and temporal variation characteristics of drip water hydrogeochemistry in the Xueyu cave of Chongqing and its implications for environmental research[J]. Environmental Science, 2018, 39(6): 2641-2650 (in Chinese). |