EARTHQUAKE ›› 2024, Vol. 44 ›› Issue (4): 62-81.doi: 10.12196/j.issn.1000-3274.2024.04.005
Previous Articles Next Articles
LIU Hong, ZHANG Xue-min, YANG Na
Received:
2024-04-22
Revised:
2024-07-24
Online:
2024-10-31
Published:
2024-12-16
CLC Number:
LIU Hong, ZHANG Xue-min, YANG Na. Phenomenon of Ionospheric TEC Coupled with Acoustic-gravity Waves Preceding Jishishan MW6.0 Earthquake in 2023[J]. EARTHQUAKE, 2024, 44(4): 62-81.
[1] Moore G W. Magnetic disturbances preceding the 1964 Alaska earthquake[J]. Nature, 1964, 203(4944): 508-509. [2] Fatkullin M N, Zelenova T I, Legenka A D. On the ionospheric effects of asthenospheric earthquakes[J]. Physics of the Earth and Planetary Interiors, 1989, 57(1-2): 82-85. [3] Pulinets S. Ionospheric precursors of earthquakes; recent advances in theory and practical applications[J]. Terrestrial Atmospheric and Oceanic Sciences, 2004, 15(3): 413-435. [4] Singh O P, Chauhan V, Singh V, et al. Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006—November 2007[J]. Physics and Chemistry of the Earth, 2009, 34(6-7): 479-484. [5] Liu Z Z. A new approach for cycle slip detection and fix using single GPS receiver’s single satellite dual frequency data containing arbitrarily large pseudorange errors[J]. The Journal of Global Positioning Systems, 2018, 16(1): 5. [6] Sardón E, Rius A, Zarraoa N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations[J]. Radio Science, 1994, 29(3): 577-586. [7] Liu J Y, Chen Y I, Chuo Y J, et al. Variations of ionospheric total electron content during the Chi-Chi earthquake[J]. Geophysical Research Letters, 2001, 28(7): 1383-1386. [8] Liu J Y, Chen Y I, Chen C H, et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 MW7.9 Wenchuan earthquake[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A4): 2008JA013698. [9] Heki K, Nakatani M, Zhan W. Ionospheric changes immediately before the 2008 Wenchuan earthquake[J]. Advances in Space Research, 2024, 73(9): 4539-4545. [10] Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(17): L17312. [11] Le H, Liu L, Liu J Y, et al. The ionospheric anomalies prior to the M9.0 Tohoku-Oki earthquake[J]. Journal of Asian Earth Sciences, 2013, 62: 476-484. [12] Dong L, Zhang X, Du X. Analysis of ionospheric perturbations possibly related to Yangbi MS6.4 and Maduo MS7.4 earthquakes on 21 May 2021 in China using GPS TEC and GIM TEC data[J]. Atmosphere, 2022, 13(10): 1725. [13] Liu J Y, Chuo Y J, Shan S J, et al. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. Annales Geophysicae, 2004, 22(5): 1585-1593. [14] Le H, Liu J Y, Liu L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002—2010[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A2): A02303. [15] Pulinets S A, Ouzounov D P, Karelin A V, et al. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system[J]. Geomagnetism and Aeronomy, 2015, 55(4): 521-538. [16] Pulinets S, Ouzounov D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 371-382. [17] Sorokin V M, Yaschenko A K, Hayakawa M. Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(11): 1260-1268. [18] Hayakawa M, Kasahara Y, Nakamura T, et al. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations[J]. Journal of Atmospheric Electricity, 2011, 31(2): 129-140. [19] Miyaki K, Hayakawa M, Molchanov O A. The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data[J]. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 2002: 229-232. [20] Molchanov O A, Hayakawa M, Miyaki K. VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling[J]. Advances in Polar Upper Atmosphere Research, 2001, 15: 146-158. [21] Muto F, Kasahara Y, Hobara Y, et al. Further study on the role of atmospheric gravity waves on the seismo-ionospheric perturbations as detected by subionospheric VLF/LF propagation[J]. Natural Hazards and Earth System Sciences, 2009, 9(4): 1111-1118. [22] Singh D, Singh B, Pundhir D. Ionospheric perturbations due to earthquakes as determined from VLF and GPS-TEC data analysis at Agra, India[J]. Advances in Space Research, 2018, 61(7): 1952-1965. [23] Freund F. Time-resolved study of charge generation and propagation in igneous rocks[J]. Journal of Geophysical Research: Biogeosciences, 2000, 105(B5): 11001-11019. [24] Freund F. Pre-earthquake signals: Underlying physical processes[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 383-400. [25] Liperovsky V A, Pokhotelov O A, Meister C V, et al. Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes[J]. Geomagnetism and Aeronomy, 2008, 48(6): 795-806. [26] Oyama K I, Devi M, Ryu K, et al. Modifications of the ionosphere prior to large earthquakes: Report from the ionosphere precursor study group[J]. Geoscience Letters, 2016, 3(1): 6. [27] Korepanov V, Hayakawa M, Yampolski Y, et al. AGW as a seismo-ionospheric coupling responsible agent[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2009, 34(6-7): 485-495. [28] Nakamura T, Korepanov V, Kasahara Y, et al. An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations[J]. Journal of Atmospheric Electricity, 2013, 33(1): 53-68. [29] Hayakawa M, Ohta K, Maekawa S, et al. Electromagnetic precursors to the 2004 mid Niigata Prefecture earthquake[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(4-9): 356-364. [30] Yang S S, Asano T, Hayakawa M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(2): 1410-1425. [31] Phanikumar D V, Maurya A K, Kumar K N, et al. Anomalous variations of VLF sub-ionospheric signal and mesospheric ozone prior to 2015 Gorkha Nepal earthquake[J]. Scientific Reports, 2018, 8(1): 9381. [32] 郭祥云, 韩立波, 张旭, 等. 2023年12月18日甘肃积石山6.2级地震震源参数和破裂特征[J]. 地震科学进展, 2024, 54(1): 75-85. GUO Xiang-yun, HAN Li-bo, ZHANG Xu, et al. Source parameters and rupture characteristics of the M6.2 Jishishan earthquake in Gansu Province on December 18, 2023[J]. Progress in Earthquake Sciences, 2024(1): 75-85 (in Chinese). [33] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [34] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102. YUAN Dao-yang, ZHANG Pei-zhen, LEI Zhong-sheng, et al. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102 (in Chinese). [35] Dobrovolsky I P, Zubkov S I, Miachkin V I. Estimation of the size of earthquake preparation zones[J]. Pure and Applied Geophysics, 1979, 117(5): 1025-1044. [36] 袁道阳. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所, 2003. YUAN Dao-yang. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic Time[D]. Beijing: Institute of Geology, China Earthquake Administration, 2003 (in Chinese). [37] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897 (in Chinese). [38] Yang Z G, Liu J, Zhang Y Y, et al. Rapid report of source parameters of 2023 M6.2 Jishishan, Gansu earthquake sequence[J]. Earth and Planetary Physics, 2024, 8(2): 436-443. [39] 高原, 李心怡, 李抒予, 等. 2023年12月18日积石山6.2级地震的深浅变形构造分析[J]. 地震, 2024, 44(1): 160-166. GAO Yuan, LI Xin-yi, LI Shu-yu, et al. Deep and shallow deformation tectonics of Jishishan MS6.2 earthquake on 18 December 2023 in China[J]. Earthquake, 2024, 44(1): 160-166 (in Chinese). [40] Hatch R R. The synergism of GPS code and carrier measurements[J]. Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning, 1982, 1: 1213-1231. [41] Ciraolo L, Azpilicueta F, Brunini C, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS[J]. Journal of Geodesy, 2007, 81(2): 111-120. [42] Dach R, Lutz S, Walser P, et al. Bernese GNSS software version 5.2[M]. Bern: Astronomical Institute, University of Bern, 2015. [43] Guo J F, Ou J K, Yuan Y B, et al. Optimal carrier-smoothed-code algorithm for dual-frequency GPS data[J]. Progress in Natural Science, 2008, 18(5): 591-594. [44] Melbourne W G. The case for ranging in GPS-based geodetic systems[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland: US Department of Commerce, 1985: 373-386. [45] Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland, USA: US Department of Commerce, 1985: 403-412. [46] Liu Z Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver[J]. Journal of Geodesy, 2011, 85(3): 171-183. [47] Lanyi G E, Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio Science, 1988, 23(4): 483-492. [48] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. [49] Liu Y G, San Liang X, Weisberg R H. Rectification of the bias in the wavelet power spectrum[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(12): 2093-2102. [50] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. [51] Schmitz-Hübsch H, Schuh H. Seasonal and short-period fluctuations of Earth rotation investigated by wavelet analysis[M]∥Tregoning P, Rizos C (eds) Geodesy-the Challenge of the 3rd Millennium Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 125-134. [52] Torrence C, Webster P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate, 1999, 12(8): 2679-2690. [53] Kestin T S, Karoly D J, Yano J I, et al. Time-frequency variability of ENSO and stochastic simulations[J]. Journal of Climate, 1998, 11(9): 2258-2272. [54] Farge M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24(1): 395-457. [55] Cheng P H, Lin C, Otsuka Y, et al. Statistical study of medium-scale traveling ionospheric disturbances in low-latitude ionosphere using an automatic algorithm[J]. Earth, Planets and Space, 2021, 73(1): 105. [56] Otsuka Y, Shinbori A, Tsugawa T, et al. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan[J]. Earth, Planets and Space, 2021, 73(1): 22. [57] Artru J, Ducic V, Kanamori H, et al. Ionospheric detection of gravity waves induced by tsunamis[J]. Geophysical Journal International, 2005, 160(3): 840-848. [58] Chakraborty S, Sasmal S, Chakrabarti S K, et al. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes[J]. Journal of Geodynamics, 2018, 113: 43-51. [59] Hines C O. Internal atmospheric gravity waves at ionospheric heights[J]. Canadian Journal of Physics, 1960, 38(11): 1441-1481. [60] Artru J, Farges T, Lognonné P. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modelling: Propagation of seismic acoustic waves[J]. Geophysical Journal International, 2004, 158(3): 1067-1077. [61] Bolt B A. Seismic air waves from the great 1964 Alaskan earthquake[J]. Nature, 1964, 202(4937): 1095-1096. [62] Davies K, Baker D M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964[J]. Journal of Geophysical Research, 1965, 70(9): 2251-2253. [63] Lognonné P, Clévédé E, Kanamori H. Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere[J]. Geophysical Journal International, 1998, 135(2): 388-406. [64] Astafyeva E, Lognonné P, Rolland L. First ionospheric images of the seismic fault slip on the example of the Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(22): L22104. [65] Rolland L M, Lognonné P, Astafyeva E, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7): 853-857. [66] Yang Y M, Meng X, Komjathy A, et al. Tohoku-Oki earthquake caused major ionospheric disturbances at 450 km altitude over Alaska[J]. Radio Science, 2014, 49(12): 1206-1213. [67] Bouchon M, Karabulut H, Aktar M, et al. Extended nucleation of the 1999 MW7.6 Izmit earthquake[J]. Science, 2011, 331(6019): 877-880. [68] Bedford J R, Moreno M, Deng Z, et al. Months-long thousand-kilometre-scale wobbling before great subduction earthquakes[J]. Nature, 2020, 580(7805): 628-635. [69] Bouchon M, Durand V, Marsan D, et al. The long precursory phase of most large interplate earthquakes[J]. Nature Geoscience, 2013, 6(4): 299-302. [70] Endo T, Kasahara Y, Hobara Y, et al. A note on the correlation of seismo-ionospheric perturbations with ground motions as deduced from F-net seismic observations[J]. Journal of Atmospheric Electricity, 2013, 33(1): 69-76. [71] Hayakawa M, Kasahara Y, Nakamura T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09305. [72] Estey L H, Meertens C M. TEQC: The multi-purpose toolkit for GPS/GLONASS data[J]. GPS Solutions, 1999, 3(1): 42-49. [73] Nischan T. GFZRNX-RINEX GNSS data conversion and manipulation toolbox[EB/OL]. GFZ Data Services. (2016)[2023-09-14]. https:∥dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:1577894. |
[1] | TIAN Jiao, ZHU Rui-jie, JU Chang-hui, TIAN Lei, ZHOU Xiao-cheng. Research Progress on Chemical Change of Hot Spring Water in Earthquake Monitoring and Prediction [J]. EARTHQUAKE, 2024, 44(4): 97-115. |
[2] | SHI Hong-yu, WANG Wan-li, ZHOU Xiao-cheng, YAN Yu-cong, LI Peng-fei, JIANG Li, CHEN Zhi. Hydrogeochemical Characteristics of Gongyihai Hot Spring, in Shimian County, Sichuan Province [J]. EARTHQUAKE, 2021, 41(1): 93-115. |
[3] | XUE Hong-pan, ZHANG Le, LU Li-na, LI Jing, WEI Qing, LIU Qing. Study on the Coseismic Response of Seismic Underground Fluid in Xiadian Fault Zone [J]. EARTHQUAKE, 2020, 40(1): 184-202. |
[4] | LU Ming-yong, FANG Zong-fei, ZHAO Li-kui. Discussion on the Long-time Trend Change Characteristics of Subsurface Fluid before the Wenchuan MS8.0 Earthquake [J]. EARTHQUAKE, 2010, 30(1): 61-72. |
[5] | QIU Ze-hua, KAN Bao-xiang, TANG Lei. Conversion and application of 4-component borehole strainmeter data [J]. EARTHQUAKE, 2009, 29(4): 83-89. |
[6] | WANG Wei-dong, LIN Chen, ZHANG Yong-zhi, WU Fang, SHE Tian-she. Study on the Correlation between Geothermal Water Activities and Regional Seismic Activities in Xi'an Area [J]. EARTHQUAKE, 2009, 29(2): 118-122. |
[7] | ZHANG Li, ZHAO Hong-sheng, CHEN Jing, LIU Yao-wei. Analysis of Water Level Change Characteristics in Epicenter Region before Yunnan's Strong Earthquakes [J]. EARTHQUAKE, 2008, 28(4): 52-58. |
[8] | HUANG Jian-ping, DING Jian-hai, YU Su-rong, SHEN Xu-hui, DU Ze-cheng. Analysis of geomagnetic characteristics in large scale [J]. EARTHQUAKE, 2008, 28(3): 49-54. |
[9] | LI Zhi-xiong, ZHU Hang, LIU Jie, ZENG Gang-ping, QIU Xue-lin. Analysis on Characteristics of Strong Earthquake Activity in Chinese Mainland Based on Empirical Mode Decomposition (EMD) Method [J]. EARTHQUAKE, 2007, 27(3): 57-62. |
[10] | DU Xue-bin, QIAN Jia-dong, CHEN Jun-ying, KANG Hao-lin, MA Zhan-hu, TAN Da-cheng, YE Qing, LI Ning. On condidtion of earth-resistivity station site [J]. EARTHQUAKE, 2007, 27(增刊): 19-27. |
[11] | WANG Lan-wei, ZHAO Jia-liu, WANG Zi-ying, WANG Yan-qiong, Han Run-quan, XU Xue-gong. Experiments of electromagnetic disturbance observation and data analysis [J]. EARTHQUAKE, 2007, 27(增刊): 96-102. |
[12] | XI Ji-lou, QIU Ying, ZHANG Ying, LIU Chao, HAN Run-quan, XU Xue-gong, ZHANG Jian-xin, ZHAO Jin-bo. Observation of the geo-electric field testing station array and data analysis study [J]. EARTHQUAKE, 2007, 27(增刊): 112-120. |
[13] | DU Xue-bin, YE Qing, ZHAO Jie, WANG Na, XUE Zhi-ming, SHI Hong-jun, MA Zhan-hu, LI Ning. Study on geoelectric field daily variation [J]. EARTHQUAKE, 2007, 27(增刊): 121-130. |
[14] | MA Qin-zhong, XI Ji-lou, CAI Jin′an, WANG Yu-xin. Study on contribution of natural source to the geoelectrical field observataion [J]. EARTHQUAKE, 2007, 27(增刊): 131-138. |
[15] | ZHENG Zhao-bi, HE Kang, WANG Xue-quan, TAO Yue-chao. Preliminary analysis on the basic characteristics of the geoelectric field [J]. EARTHQUAKE, 2007, 27(增刊): 139-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||