EARTHQUAKE ›› 2024, Vol. 44 ›› Issue (4): 194-208.doi: 10.12196/j.issn.1000-3274.2024.04.013
Previous Articles Next Articles
LI Ya-nan1, DOU Ai-xia1, GUO Hong-mei2, CUI Zi-ang3
Received:
2024-04-11
Revised:
2024-07-09
Online:
2024-10-31
Published:
2024-12-16
CLC Number:
LI Ya-nan, DOU Ai-xia, GUO Hong-mei, CUI Zi-ang. Using PS-InSAR Technology to Analyze the Characteristics and Causes of Urban Subsidence in Yucheng District Ya’an, Sichuan[J]. EARTHQUAKE, 2024, 44(4): 194-208.
[1] 卢旺达, 韩春明, 岳昔娟, 等. 基于Sentinel-1A数据的天津地区PS-InSAR地面沉降监测与分析[J]. 遥感技术与应用, 2020, 35(2): 416-423. LU Wang-da, HAN Chun-ming, YUE Xi-juan, et al. Land subsidence monitoring in Tianjin with PS-InSAR technique based on Sentinel-1 data[J]. Remote Sensing Technology and Application, 2020, 35(2): 416-423 (in Chinese). [2] 周定义, 左小清, 喜文飞, 等. 时序新方法在城市地面沉降监测中的研究[J]. 测绘科学, 2022, 47(5): 115-124. ZHOU Ding-yi, ZUO Xiao-qing, XI Wen-fei, et al. Research on the new method of time series in urban land subsidence monitoring[J]. Science of Surveying and Mapping, 2022, 47(5): 115-124 (in Chinese). [3] 朱邦彦, 唐超, 任志忠, 等. 基于PS-InSAR技术的珠海市地表形变监测与驱动力分析[J]. 测绘通报, 2022(6): 108-113. ZHU Bang-yan, TANG Chao, REN Zhi-zhong, et al. Surface deformation monitoring and driving force analysis in Zhuhai city based on PS-InSAR technology[J]. Bulletin of Surveying and Mapping, 2022(6): 108-113 (in Chinese). [4] Zhang Y H, Zhang J X, Wu H A, et al. Monitoring of urban subsidence with SAR interferometric point target analysis: A case study in Suzhou, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 812-818. [5] 俞晓莹, 姜成岭, 张建, 等. IPTA监测圣佩德罗湾港口地表时序沉降[J]. 测绘科学, 2012, 37(6): 21-25. YU Xiao-ying, JIANG Cheng-ling, ZHANG Jian, et al. IPTA monitoring long-term series surface deformation of SAN PEDRO[J]. Science of Surveying and Mapping, 2012, 37(6): 21-25 (in Chinese). [6] 丁荣荣, 徐佳, 林晓彬, 等. 基于高分辨率 TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015, 27(4): 158-164. DING Rong-rong, XU Jia, LIN Xiao-bin, et al. Monitoring of surface subsidence using PSInSAR with TerraSAR-X high resolution data[J]. Remote Sensing for Natural Resources, 2015, 27(4): 158-164 (in Chinese). [7] 刘晓杰, 赵超英, 康亚, 等. 茂县滑坡形变的Sentinel-1数据分析[J]. 测绘科学, 2019, 44(4): 55-59+71. LIU Xiao-jie, ZHAO Chao-ying, KANG Ya, et al. Analysis of Maoxian landslide deformation by using Sentinel-1 data[J]. Science of Surveying and Mapping, 2019, 44(4): 55-59+71 (in Chinese). [8] 许才军, 何平, 温扬茂, 等. InSAR技术及应用研究进展[J]. 测绘地理信息, 2015, 40(2): 1-9. XU Cai-jun, HE Ping, WEN Yang-mao, et al. Recent advances InSAR interferometry and its applications[J]. Journal of Geomatics, 2015, 40(2): 1-9 (in Chinese). [9] 杨红磊, 彭军还, 康志忠, 等. InSAR技术原理及实践[M]. 北京: 科学出版社, 2021. YANG Hong-lei, PENG Jun-huan, KANG Zhi-zhong, et al. InSAR technology principles and practices[M]. Beijing: Science Press, 2021 (in Chinese). [10] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permeanent scatterers in Differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212. [11] 雷坤超, 陈蓓蓓, 贾三满, 等. 基于PS-InSAR技术的北京地面沉降特征及成因初探[J]. 光谱学与光谱分析, 2014, 34(8): 2185-2189. LEI Kun-chao, CHEN Bei-bei, JIA San-man, et al. Primary investigation of formation and genetic mechanism of land subsidence based on PS-InSAR technology in Beijing[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2185-2189 (in Chinese). [12] 高二涛, 范冬林, 付波霖, 等. 基于PS-InSAR和SBAS技术监测南京市地面沉降[J]. 大地测量与地球动力学, 2019, 39(2): 158-163. GAO Er-tao, FAN Dong-lin, FU Bo-lin, et al. Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology[J]. Journal of Geodesy and Geodynamics, 2019, 39(2): 158-163 (in Chinese). [13] 李治斌, 党星海, 蔡明祥, 等. 基于PSInSAR技术的珠海市地表沉降监测与归因分析[J]. 自然灾害学报, 2021, 30(1): 38-46. LI Zhi-bin, DANG Xing-hai, CAI Ming-xiang, et al. Subsidence monitoring and analysis of Zhuhai based on PSInSAR technology[J]. Journal of Natural Disasters, 2021, 30(1): 38-46 (in Chinese). [14] 张致伟, 龙锋, 石富强, 等. 2022年6月1日四川芦山MS6.1地震的发震构造与力学机制探讨[J]. 地球物理学报, 2023, 66(10): 4095-4110. ZHANG Zhi-wei, LONG Feng, SHI Fu-qiang, et al. Discussion on seismogenic structure and mechanical mechanism of the 1 June 2022 MS6.1 Sichuan Lushan earthquake[J]. Chinese Journal of Geophysics, 2023, 66(10): 4095-4110 (in Chinese). [15] 王俊驿. 1971—2017年雅安市气候变化特征分析[J]. 现代农业科技, 2018(21): 215-217. WANG Jun-yi. Characterisation of climate change in Ya’an, 1971—2017[J]. Modern Agricultural Science and Technology, 2018(21): 215-217 (in Chinese). [16] 张红艳. 龙门山断裂带区域现代构造应力场与汶川MS8.0级地震力学成因探讨[D]. 北京: 中国地震局地质研究所, 2014. ZHANG Hong-yan. The recent tectonic stress field of the Longmen Shan fault zone and mechanical genesis of the 2008 MS8.0 Wenchuan earthquake[D]. Beijing: Institute of Geology, China Earthquake Administration, 2014 (in Chinese). [17] 李尚锦, 周学云, 高文良, 等. 1991~2020年雅安地区降水特征研究[J]. 高原山地气象研究, 2022, 42(S2): 8-13. LI Shang-jin, ZHOU Xue-yun, GAO Wen-liang, et al. Analysis of precipitation characteristics in Ya’an from 1991 to 2020[J]. Plateau and Mountain Meteorology Research, 2022, 42(S2): 8-13 (in Chinese). [18] 王庆良, 崔笃信, 王文萍, 等. 川西地区现今垂直地壳运动研究[J]. 中国科学(D辑), 2008, 38(5): 598-610. WANG Qing-liang, CUI Du-xin, WANG Wen-ping, et al. A study of present-day vertical crustal movements in the western Sichuan area[J]. Science in China (Series D), 2008, 38(5): 598-610 (in Chinese). [19] 刘媛媛, 张勤, 赵超英, 等. PS-InSAR技术用于太原市地面沉降形变分析[J]. 大地测量与地球动力学, 2014, 34(2): 6-9+13. LIU Yuan-yuan, ZHANG Qin, ZHAO Chao-ying, et al. Analysis of ground subsidence deformation in Taiyuan City with PS-InSAR technique[J]. Journal of Geodesy and Geodynamics, 2014, 34(2): 6-9+13 (in Chinese). [20] 四川省水文资源勘测中心. 2022年四川省水资源公报[R]. 成都: 四川省水利厅, 2023. Sichuan Hydrological and Water Resources Survey Center. 2022 Sichuan Province water resources bulletin[R]. Chengdu: Sichuan Province Water Pesources Department, 2023 (in Chinese). [21] 芮雪莲, 杨耀, 官致君, 等. 四川会理川-31井水位变化与降雨量关系及异常识别[J]. 华北地震科学, 2021, 39(1): 78-83. RUI Xue-lian, YANG Yao, GUAN Zhi-jun, et al. Relationship between water level variation and rainfall and anomaly identification of Huili Chuan-31 well in Sichuan Province[J]. North China Earthquake Sciences, 2021, 39(1): 78-83 (in Chinese). [22] 孔祥如. 地层形变与地下水位分层监测数据的交叉小波分析[J]. 煤田地质与勘探, 2022, 50(6): 138-146. KONG Xiang-ru. Cross wavelet analysis between layered monitoring data of stratum deformation and groundwater level regime[J]. Coal Geology & Exploration, 2022, 50(6): 138-146 (in Chinese). [23] 雅安市雨城区人民政府. 雅安市雨城区矿产资源总体规划(2021—2025年)[R]. 雅安: 雅安市雨城区人民政府, 2022. Yucheng District People’s Government of Ya’an City. Master plan for mineral resources development in Yucheng district, Ya’an City (2021—2025)[R]. Ya’an: Yucheng District People’s Government of Ya’an City, 2022 (in Chinese). |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||