EARTHQUAKE ›› 2025, Vol. 45 ›› Issue (1): 130-146.doi: 10.12196/j.issn.1000-3274.2025.01.009
Previous Articles Next Articles
JIANG Yong1,2, BAI Ling1,2, HUANG Xing-hui3, XIE Jun2,4
Received:2024-03-02
Accepted:2024-05-21
Published:2024-12-06
CLC Number:
JIANG Yong, BAI Ling, HUANG Xing-hui, XIE Jun. Dynamic Processes of Landslides Revealed by Seismic Waveforms[J]. EARTHQUAKE, 2025, 45(1): 130-146.
| [1] Ekström G. Global detection and location of seismic sources by using surface waves[J]. Bulletin of the Seismological Society of America, 2006, 96(4A): 1201-1212. [2] Yin A. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21745-21759. [3] Wang P, Scherler D, Jing L Z, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 2014, 346(6212): 978-981. [4] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. HUANG Run-qiu. Large scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454 (in Chinese). [5] Petley D N. Characterizing giant landslides[J]. Science, 2013, 339(6126): 1395-1396. [6] Maurer J M, Schaefer J M, Russell J B, et al. Seismic observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the Himalayas[J]. Science Advances, 2020, 6(38): eaba3645. [7] Ekström G, Nettles M, Abers G A. Glacial earthquakes[J]. Science, 2003, 302(5645): 622-624. [8] Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11: 114-120. [9] Bai L, Jiang Y, Mori J. Source processes associated with the 2021 glacier collapse in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau[J]. Landslides, 2023, 20(2): 421-426. [10] 柴贺军, 刘汉超, 张倬元. 中国堵江滑坡发育分布特征[J]. 山地学报, 2000, 18(S1): 51-54. CHAI He-jun, LIU Han-chao, ZHANG Zhuo-yuan. The temporal-soatial distribution of damming landslides in China[J]. Mountain Research, 2000, 18(S1): 51-54 (in Chinese). [11] Cook K L, Rekapallin R, Dietze M, et al. Detection and potential early warning of catastrophic flow events with regional seismic networks[J]. Science, 2021, 374(6563): 87-92. [12] 孔纪名, 田述军, 阿发友, 等. 贵州关岭“6·28”特大滑坡特征和成因[J]. 山地学报, 2010, 28(6): 725-731. KONG Ji-ming, TIAN Shu-jun, A Fa-you, et al. Guizhou Guanling landslide formation mechanism and its characteristics[J]. Mountain Research, 2010, 28(6): 725-731 (in Chinese). [13] 陈典宏, 刘一诺. 云南昭通市镇雄县发生山体滑坡部队官兵和民兵紧急救援[EB/OL]. (2024-01-22)[2024-04-28]. http://www.news.cn/20240122/8dc99a9932d54883b6fdae6aa1bd838d/c.html. CHEN Dian-hong, LIU Yi-nuo. A landslide occurred in Zhenxiong County, Zhaotong City, Yunnan Province, and troops, soldiers, and militia are urgently rescuing the area[EB/OL]. (2024-01-22)[2024-04-28]. http://www.news.cn/20240122/8dc99a9932d54883b6fdae6aa1bd838d/c.html (in Chinese). [14] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评, 2014, 60(4): 858-868. LIU Chuan-zheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858-868 (in Chinese). [15] 殷志强, 徐永强, 赵无忌. 四川都江堰三溪村“7·10”高位山体滑坡研究[J]. 工程地质学报, 2014, 22(2): 309-318. YIN Zhi-qiang, XU Yong-qiang, ZHAO Wu-ji, et al. Sanxi village landslide in Dujiangyan, Sichuan province on July 10, 2013[J]. Journal of Engineering Geology, 2014, 22(2): 309-318 (in Chinese). [16] 魏云杰, 褚宏亮, 庄茂国, 等. 四川省峨眉山市王山—抓口寺滑坡成因机理研究[J]. 工程地质学报, 2016, 24(3): 477-483. WEI Yun-jie, CHU Hong-liang, ZHUANG Mao-guo, et al. Formation mechanism of Wangshan-Zhuakoushi landslide in Emei city, Sichuan Province[J]. Journal of Engineering Geology, 2016, 24(3): 477-483 (in Chinese). [17] Li Z Y, Huang X H, Xu Q, et al. Dynamics of the Wulong landslide revealed by broadband seismic records[J]. Earth, Planets and Space, 2017, 69: 27. [18] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628. XU Qiang, LI Wei-le, DONG Xiu-jun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628 (in Chinese). [19] 王佳运, 李林, 郑定国, 等. “8·12”山阳滑坡视向滑动特征与运动过程[J]. 灾害学, 2018, 33(1): 111-116. WANG Jia-yun, LI Lin, ZHENG Ding-guo, et al. Characteristics of apparent dip slide and movement process of the “8·12” Shanyang rockslide[J]. Journal of Catastrophology, 2018, 33(1): 111-116 (in Chinese). [20] Zhang Z, He S, Liu W, et al. Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms[J]. Landslides, 2019, 16(4): 777-785. [21] 郑光, 许强, 刘秀伟, 等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报, 2020, 28(3): 541-556. ZHENG Guang, XU Qiang, LIU Xiu-wei, et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: Characteristics and failure mechanism[J]. Journal of Engineering Geology, 2020, 28(3): 541-556 (in Chinese). [22] 葛永刚, 陈兴长, 方华, 等. 汉源县大渡河“8·6”崩塌堵河灾害研究[J]. 山地学报, 2010, 28(1): 123-128. GE Yong-gang, CHEN Xing-chang, FANG Hua, et al. Study on the disaster of Dadu river block induced by the rock fall occurred at Hanyuan county on August 6th, 2009[J]. Mountain Research, 2010, 28: 123-128 (in Chinese). [23] 殷跃平, 王文沛, 张楠, 等. 强震区高位滑坡远程灾害特征研究以四川茂县新磨滑坡为例[J]. 中国地质, 2017, 44(5): 827-841. YIN Yue-ping, WANG Wen-pei, ZHANG Nan, et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5): 827-841 (in Chinese). [24] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6): 1534-1551. XU Qiang, ZHENG Guang, LI Wei-le, et al. Study on successive landslide damming events of Jinsha river in Baige village on October 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6): 1534-1551 (in Chinese). [25] Bai L, Klemperer S L, Mori J, et al. Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal[J]. Science Advances, 2019, 5(6): eaav0723. [26] Kargel J S, Leonard G J, Shugar D H, et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake[J]. Science, 2015, 351(6269): aac8353. [27] Yamada M, Matsushi Y, Chigira M, et al. Seismic recordings of landslides caused by Typhoon Talas (2011), Japan[J]. Geophysical Research Letters, 2012, 39(13): L13301. [28] Yamada M, Kumagai H, Matsushi Y, et al. Dynamic landslide processes revealed by broadband seismic records[J]. Geophysical Research Letters, 2013, 40(12): 2998-3002. [29] 黄兴辉, 李正媛, 余丹, 等. 使用宽频带地震记录研究2017年6月24日茂县新磨滑坡的动力学过程[J]. 地球物理学报, 2018, 61(10): 4055-4062. HUANG Xing-hui, LI Zheng-yuan, YU Dan, et al. Dynamic processes of the 24 June 2017 Xinmo landslide in Maoxian revealed by broadband seismic records[J]. Chinese Journal of Geophysics, 2018, 61(10): 4055-4062 (in Chinese). [30] 盛敏汉, 储日升, 曾求, 等. 地震学方法在滑坡体结构及破裂过程的应用研究进展[J]. 地球物理学进展, 2019, 34(6): 2188-2195. SHENG Min-han, CHU Ri-sheng, ZENG Qiu, et al. Application of seismological methods in landslide structure and rupture process[J]. Progress in Geophysics, 2019, 34(6): 2188-2195 (in Chinese). [31] Yan Y, Cui Y F, Huang X H, et al. Combining seismic signal dynamic inversion and numerical modeling improves landslide process reconstruction[J]. Earth Surface Dynamics, 2022, 10(6): 1233-1252. [32] Xie J, Coulthard T J, McLelland S J. Modelling the impact of seismic triggered landslide location on basin sediment yield, dynamics and connectivity[J]. Geomorphology, 2022, 398: 108029. [33] Ekström G, Stark C P. Simple scaling of catastrophic landslide dynamics[J]. Science, 2013, 339(6126): 1416-1419. [34] Gualtieri L, Ekström G. Broad-band seismic analysis and modeling of the 2015 Taan Fjord, Alaska landslide using Instaseis[J]. Geophysical Journal International, 2018, 213(3): 1912-1923. [35] Allstadt K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1472-1490. [36] Hibert C, Ekström G, Stark C P. Dynamics of the Bingham Canyon Mine landslides from seismic signal analysis[J]. Geophysical Research Letters, 2014, 41(13): 4535-4541. [37] Hibert C, Stark C P, Ekström G. Dynamics of the Oso-Steelhead landslide from broadband seismic analysis[J]. Natural Hazards and Earth System Sciences, 2015, 15(6): 1265-1273. [38] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: The S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. [39] Suriñach E, Vilajosana I, Khazaradze G, et al. Seismic detection and characterization of landslides and other mass movements[J]. Natural Hazards and Earth System Science, 2005, 5(6): 791-798. [40] Helmstetter A, Garambois S. Seismic monitoring of Sechilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F3): F03016. [41] Chen C H, Chao W A, Wu Y M, et al. A seismological study of landquakes using a real-time broad-band seismic network[J]. Geophysical Journal International, 2013, 194(2): 885-898. [42] Hibert C, Mangeney A, Grandjean G, et al. Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F4): F04032. [43] Dammeier F, Moore J R, Haslinger F, et al. Characterization of alpine rockslides using statistical analysis of seismic signals[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F4): F04024. [44] Tsai V C, Ekström G. Analysis of glacial earthquakes[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3): F03S22. [45] Nettles M, Ekström G. Glacial earthquakes in Greenland and Antarctica[J]. Annual Review of Earth and Planetary Sciences, 2010, 38(1): 467-491. [46] Chen X, Shearer P M, Walter F, et al. Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B6): B06311. [47] Murray T, Selmes N, James T D, et al. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(6): 964-982. [48] Veitch S A, Nettles M. Spatial and temporal variations in Greenland glacial-earthquake activity, 1993—2010[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F4): F04007. [49] Olsen K G, Nettles M. Patterns in glacial-earthquake activity around Greenland, 2011-13[J]. Journal of Glaciology, 2017, 63(242): 1077-1089. [50] Kao H, Shan S J. The Source-Scanning Algorithm: Mapping the distribution of seismic sources in time and space[J]. Geophysical Journal International, 2004, 157(2): 589-594. [51] Kao H, Kan C W, Chen R Y, et al. Locating, monitoring, and characterizing typhoon-linduced landslides with real-time seismic signals[J]. Landslides, 2012, 9(4): 557-563. [52] Xie J, Chu R S, Ni S D. Relocation of the 17 June 2017 Nuugaatsiaq (Greenland) landslide based on Green’s functions from ambient seismic noises[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5): e2019JB018947. [53] Kiser E, Ishii M. Back-projection imaging of earthquakes[J]. Annual Reviews of Earth and Planetary Sciences, 45(1): 271-299. [54] Kanamori H, Given J. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of mount St. Helens-A terrestrial monopole?[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7): 5422-5432. [55] Eissler H K, Kanamori H. A single-force model for the 1975 Kalapana, Hawaii, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B6): 4827-4836. [56] Hasegawa H S, Kanamori H. Source mechanism of the magnitude 7.2 Grand Banks earthquake of November 1929: Double couple or submarine landslide[J]. Bulletin of the Seismological Society of America, 1987, 77(6): 1984-2004. [57] Okal E A. Single forces and double-couples: A theoretical review of their relative efficiency for the excitation of seismic and tsunami waves[J]. Journal of Physics of the Earth, 1990, 38(6): 445-474. [58] Dahlen F A. Single-force representation of shallow landslide sources[J]. Bulletin of the Seismological Society of America, 1993, 83(1): 130-143. [59] Takei Y, Kumazawa M. Why have the single force and torque been excluded from seismic source models?[J]. Geophysical Journal International, 1994, 118(1): 20-30. [60] Fukao Y. Single-force representation of earthquakes due to landslides or the collapse of caverns[J]. Geophysical Journal International, 1995, 122(1): 243-248. [61] Nakano M, Kumagai H, Chouet B A. Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions[J]. Journal of Volcanology and Geothermal Research, 2003, 122(3-4): 149-164. [62] Nakano M, Kumagai H. Waveform inversion of volcano-seismic signals assuming possible source geometries[J]. Geophysical Research Letters, 2005, 32(12): L12302. [63] Nakano M, Kumagai H, Chouet B, et al. Waveform inversion of volcano-seismic signals for an extended source[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B2): B02306. [64] Lin C H, Kumagai H, Ando M et al. Detection of landslides and submarine slumps using broadband seismic networks[J]. Geophysical Research Letters, 2010, 37(22): L22309. [65] Chao W A, Zhao L, Chen S C, et al. Seismology-based early identification of dam-formation landquake events[J]. Scientific Reports, 2016, 6: 19259. [66] Ye L L, Kanamori H, Rivera L, et al. The 22 December 2018 tsunami from flank collapse of Anak Krakatau volcano during eruption[J]. Science Advances, 2020, 6(3): eaaz1377. [67] Nakano M, Kumagai H, Inoue H. Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function[J]. Geophysical Journal International, 2008, 173(3): 1000-1011. [68] Wang R J. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bulletin of the Seismological Society of America, 1999, 89(3): 733-741. [69] Li W, Chen Y, Liu F, et al. Chain-style landslide hazardous process: Constraints from seismic signals analysis of the 2017 Xinmo landslide, SW China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 2025-2037. [70] Yamada M, Mangeney A, Matsushi Y, et al. Estimation of dynamic friction and movement history of large landslides[J]. Landslides, 2018, 15(10): 1963-1974. [71] 赵娟, 漆静晨, 杨佳琛, 等. 基于地震信号反演滑坡动力学机制[J]. 大地测量与地球动力学, 2019, 39: 1007-1012. ZHAO Juan, QI Jing-chen, YANG Jia-chen, et al. Inverted landslide dynamics based on seismic signals[J]. Journal of Geodesy and Geodynamics, 2019, 39(10): 1007-1012 (in Chinese). [72] Sergeant A, Mangeney A, Stutzmann E, et al. Complex force history of a calving-generated glacial earthquake derived from broadband seismic inversion[J]. Geophysical Research Letters, 2016, 43(3): 1055-1065. [73] Sergeant A, Mangeney A, Yastrebov V A, et al. Monitoring Greenland ice sheet buoyancy-driven calving discharge using glacial earthquakes[J]. Annals of Glaciology, 2019, 60(79): 75-95. [74] Zhao J, Ouyang C J, Ni S D, et al. Analysis of the 2017 June Maoxian landslide processes with force histories from seismological inversion and terrain features[J]. Geophysical Journal International, 2020, 222(3): 1965-1976. [75] Kawakatsu H. Centroid single force inversion of seismic waves generated by landslides[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B9): 12363-12374. [76] Kang C, Chan D, Su F, et al. Runout and entrainment analysis of an extremely large rock avalanche: A case study of Yigong, Tibet, China[J]. Landslides, 2017, 14(1): 123-139. [77] Fan X M, Xu Q, Scaringi G, et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan China[J]. Landslides, 2017, 14(6): 2129-2146. [78] Dong J, Zhang L, Li M, et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 2018, 15(1): 135-144. [79] Laske G, Masters G, Ma Z, et al. Update on CRUST1.0-A 1-degree global model of Earth’s crust[EB/OL]. (2013-04-07)[2024-03-02]. http://igppweb.ucsd.edu/~gabi/crust1.html. [80] Chang W, Xu Q, Dong X et al. Dynamic process analysis of the Xinmo landslide via seismic signal and numerical simulation[J]. Landslides, 2022, 19(6): 1463-1478. |
| [1] | CHEN Zhao-hui, CHEN Shi, ZHANG Shuang-xi, LIU Jin-zhao. Multi-Scale Gravity Field of Southeastern Tibetan Plateau and its Tectonic Significance [J]. EARTHQUAKE, 2021, 41(1): 25-39. |
| [2] | LUO Yi, TIAN Yun-feng, ZHANG Su, ZHANG Jing-fa. Study on Characteristics of Permafrost Deformation in the Tibetan Plateau Using InSAR Technique [J]. EARTHQUAKE, 2020, 40(3): 179-188. |
| [3] | WAN Sen-lin, ZHANG Jun-long, LIU Ming-jun, HE Wei-Min, LI Hai-long, GUO Chang-bao, LI Zhi-min. Seismogenic Structure and Seismic Activity Analysis of Minshan Block [J]. EARTHQUAKE, 2020, 40(2): 49-70. |
| [4] | LI Jian-jun, CAI Yao-yao, ZHANG Jun-long. Geometric Structure and Slip Gradient Model of the Tazang Fault in the East Kunlun Fault Zone [J]. EARTHQUAKE, 2019, 39(1): 20-28. |
| [5] | ZHANG Guo-qing, ZHU Yi-qing, LIANG Wei-feng, GUO Shu-song, WEI Shou-chun. Spatial Patterns of Regional Gravity Changes before the 2008 and 2014 Yutian MS7.3 Earthquakes [J]. EARTHQUAKE, 2018, 38(4): 14-21. |
| [6] | XU Hua-chao, WANG Hui, CAO Jian-ling. Slip Rates of the Major faults in the Northeastern Tibetan Plateau and Their Geodynamic Implications [J]. EARTHQUAKE, 2018, 38(3): 13-23. |
| [7] | YE Mao-sheng, MENG Guo-jie, SU Xiao-ning. Locking Characteristics and Slip Deficits of the Main Faults in the Northeast Margin of Tibetan Plateau [J]. EARTHQUAKE, 2018, 38(3): 1-12. |
| [8] | XU Jing, LI Hai-yan, SHAO Zhi-gang, FENG Jian-gang, ZHANG Zhu-qi. Effects of the 2015 Nepal MS8.1 Earthquake on Mainland China based on Coulomb Stress Changes [J]. EARTHQUAKE, 2016, 36(1): 69-77. |
| [9] | YANG Bo, ZHU Shuang, YANG Guo-hua, ZHOU Wei, FENG Sheng-tao, CHEN Xin. Characteristics of the Regional Deformation Field before Minxian—Zhangxian MS6.6 Earthquake [J]. EARTHQUAKE, 2014, 34(2): 115-123. |
| [10] | CAO Jian-ling, WANG Hui, ZHANG Jing. Numerical Modeling of Lower Crustal Flow beneath the Tibetan Plateau [J]. EARTHQUAKE, 2013, 33(4): 55-63. |
| [11] | LI Qiang, JIANG Zai-sen, WU Yan-qiang, ZHAO Jing, WEI Wen-xin, LIU Xiao-xia. Discussion on the Implications of Short-term Crust Deformation Characteristics in the Northeastern Margin of Tibetan Plateau after the 2008 Wenchuan Earthquake [J]. EARTHQUAKE, 2013, 33(3): 124-132. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||