[1] Ogata Y. Statistical models for earthquake occurrence and residual analysis for point process[J]. Journal of The American Statistical Association, 1988, 83: 9-27. [2] Ogata Y. Statistical models for st and ard seismicity and detection of anomalies by residual analysis for point process[J]. Tectonophysics, 1989, 83: 9-27. [3] Ogata Y. Space-time point-process models for earthquake occurr ence[J]. Ann Inst Satist Math, 1998, 50(2): 379-402. [4] 王炜,戴维乐,黄冰树. 地震震级的统计分布及其地震强度因子Mf 在华北中强以上地震前的异常变化[J]. 中国地震, 1994, 10(增刊), 95-110. [5] Makjanic B.A contribution to the statistical analysis of Zagreb earthquakes in theperiod 1869~ 1968[J]. Pure Appl Geophys, 1972, 95: 80-88. [6] Makjanic B.On the frequency distribution of earthquake magnitude and intensity [J]. Bull Seism Soc Amer 1980, 70: 2253-2 260. [7] Lomnitz-Adler J, Lomnitz C. A new magnitude-fr equency relation[J], Tectonophysics, 1978, 49: 237-245. [8] 陈时军,王志才,陶九庆. 非线性震级频度关系与两类地震活动系统[J]. 地震学报, 1998, 20(2): 174-184. [9] Berrill J B, Dav is RO. Maximumentropy and the magnitude distribution[J]. Bull Seism Soc. Amer, 1980, 70: 1 823-1831. [10] Main I G, Burton P W. Information theory and the earthquake frequency-magnitude distribution[J]. Bull Seism Soc Amer, 1984, 74: 1 409-1426. [11] Main I G, Burton P W. Long-term earthquake recurr ence constrained by tectonic seismic momentrelea serates[J]. Bull Seism Soc Amer, 1986, 76: 297-304. [12] Main I G.Earthquake as critical phenomena: implication for probabilisticseismic hazard analysis[J]. Bull Seism Soc. Amer, 1995, 85: 1299-1 308. [13] Kagan Y Y. Seismic moment-f requency relation for shallow earthquakes: regional comparison[J]. J Geophys Res, 1997, 102: 2 835-2852. [14] 冯德益,大内彻. 地震预报研究中的新指标新方法[J]. 地震学报, 1994, 16(2): 258-267. [15] 李全林,于渌,郝柏林,等. 震级-频度关系的时空扫描[M]. 北京: 地震出版社, 1979. [16] Vere-Jones D. Stochastic models for earthquake occurr ence (with discussion) [J]. J Roy Stat Soc, 1970, B 32: 1-62. [17] Liu J, Vere-Jones D, Ma L, et al. The principle of coupled stress relea se model and its application[J]. Acta Seismol Sinica, 1998, 11: 273-281. [18] Shi Y, Liu J D, Ver e-Jones J, Zhuang Ma Li. Application of mechanical and statistical models to study seismicity of synthetic earth quake and the prediction of naturalones[J]. Ac ta Seismol Sinica, 1998, 11: 421-430. [19] Chunsheng Lu, Har te D, Bebbington M. A linked stress relea se model for historical Japanese earthquakes: coupling among ma jor seismicregions[J]. Earth planets Space, 1999, 52: 907-916. [20] Chunsheng Lu, Vere-Jones D. Application of linked stress relea se Model to historical earth quake data: com parison between two kinds of tectonic[J]. Pure appl Geophys, 2000, 157: 2351-2 346. [21] Utsu T.A statistical study on the occurrence of after shocks[J]. Geophys Mag, 1961, 30: 526-605. [22] 庄建仓,马丽. 主震和余震——从大森公式到ETAS模型[J]. 国际地震动态, 2000, (5): 12-17. [23] Utsu T, Matsu'ure R. The centenary of the Omori formula for adecay law of after shock activity [J]. J Phys Earth, 1995, 45: 1-33. [24] Guo Z, Ogata Y. Statistical relations between the parameters of after shocks in time, space and magnitude[J]. J Geophys Res, 1997, 102: 2 857-2873. [25] Ver e-Jones D. Probability and information gain for earthquake forecasting[J]. Problem in Geodynamics and Seismology: Coll Sci Proc Computational Seismology, 1998, 30: 248-263. [26] 吴忠良. 地震震源物理中的临界现象[M]. 北京: 地震出版社, 2000. 11-13, 83-85, 86-102. [27] Zhuang J M. Li Ma.The stress release model and results from modelling features of some seismicregions in China [J]. Acta Seismol Sinica, 1998, 11(1): 59-70. [29] 刘正荣,钱兆霞,王维清. 前震的一个标志——地震频度的衰减[J]. 地震研究1979. 2(4): 1-9. [30] 刘正荣,孔昭麟. 地震频度衰减与地震预报[J]. 地震研究, 1986, 9(1): 1-11. [31] Liu Zheng-rong. Earthquake of requency and prediction[J]. Bull Seism Soc Ameri, 1984, 74(1): 255-265. [32] Paul A R, Lucile MJ.Earthquake hazard after a mainshock in Califor nia[J]. Science 1989, 243: 1 173-1 175. [33] Paul A R, Lucile MJ.Earthquake after shocks: upda te[J]. Science, 1994, 265: 1 251-1 252. [34] UstuT.Estimation of parameter values in statistics(I II)[J] J Fac Sci Hokkaido Univ Ser VI I, 1978, 3: 379-441. [35] Healy J H, Keilis-Borok V I, Lee W H K.IASPEIsoftware library[M]. Published byIASPEI in collaboration with Seism. Soc Amer 1997, 6: 80-94. [36] Sch war tz D P, Coppersmith K J. Fault behavior and characteristic: earthquake: examples from the Wa sa tch and San Andreas Fault Zones[J]. J Geophys Res, 1984, 89(B7): 5 681-5 698. [37] 刘百篪. 活断层带的特征滑动行为与中强以上地震序列[J]. 中国地震, 1987, 3(3): 60-67. [38] 李钦祖,于利民,王吉易,等.中国大陆地震的成组活动和概率预报[J]. 中国科学(B J), 1993, 23(5): 519-526. [39] 陈,陈凌. 分形几何学[M]. 北京: 地震出版社, 1998. 163-185, 170-176. [40] Bak P, Tong C, Wiesenfeld K. Self-organized criticality [J]. Phys Res, 1988, A38: 364-374. [41] Bak P, Tong C.Earthquakes as a Self-organized critical phenomenon[J]. J Geophys Res, 1989, 94: 15 635-15 637. [42] 王东生,曹磊. 混沌、分形及其应用[M]. 合肥: 中国科技大学出版社, 1995, 379-389. [43] Yang Wenzheng, Vere-Jones, D, Ma Li. A proposed method for locating the critical region of a future earthquake using the critical earthquake concept[J]. J Geophys Res2001, 106(B3): 4 121-4 135. [44] 张国民,耿鲁明,石耀霖. 中国大陆强震轮回活动的计算机研究[J]. 中国地震. 1993, (9): 20-22. [45] Vere-Jones D, Deng Y L. A point process analysis of historical earthquake from north China [J]. Earthquake Res, China, 1988, 2: 165-181. [46] Zheng X, Ver e-Jones D. Application of stress release models to historical earthquake from North China [J]. Preprint Pure Appl Geophys. 1991, 135: 559-576. [47] Zheng X, Vere-Jones D. Futher Applications of stochasticstress release model to historical earthquake data[J]. Tectonophysics, 1994, 229: 101-121. [48] 朱成熹,郑兴树. 地震烈度区划计算的非齐次马尔科夫模型[J]. 地震学报, 1986, 8(增刊): 154-160. |