EARTHQUAKE ›› 2021, Vol. 41 ›› Issue (4): 15-45.doi: 10.12196/j.issn.1000-3274.2021.04.002
Previous Articles Next Articles
LI Ying, GAO Yuan
Received:
2020-09-01
Revised:
2020-12-16
Online:
2021-10-31
Published:
2022-03-25
CLC Number:
LI Ying, GAO Yuan. Basic Characteristics of Tectonics and Seismic Anisotropy in the Southeastern Margin of the Qinghai-Tibet Plateau[J]. EARTHQUAKE, 2021, 41(4): 15-45.
[1] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052): 1663-1670. [2] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280. [3] Molnar P, Tapponnier P. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4201): 419-426. [4] Tapponnier P, Ryerson F J, Woerd J V D, et al. Long-term slip rates and characteristic slip: Keys to active fault behaviour and earthquake hazard[J]. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 2001, 333(9): 483-494. [5] England P, Houseman G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research, 1986, 91(B3): 3664-3676. [6] Yang Y Q, Liu M. The Indo-Asian continental collision: A 3-D viscous model[J]. Tectonophysics, 2013, 606: 198-211. [7] Clark M K, Royden L H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28(8): 703-706. [8] Shen F, Royden L H, Burchfiel B C. Large-scale crustal deformation of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6793-6816. [9] 吴中海, 龙长兴, 范桃园, 等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 2015, 34(1): 1-31. WU Zhong-hai, LONG Chang-xing, FAN Tao-yuan, et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 2015, 34(1): 1-31 (in Chinese). [10] 阚荣举, 张四昌, 晏凤桐, 等. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 1977, 20(2): 96-109. KAN Rong-ju, ZHANG Si-chang, YAN Feng-tong, et al. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Chinese Journal of Geophysics, 1977, 20(2): 96-109 (in Chinese). [11] 向宏发, 虢顺民, 冉勇康, 等. 滇西北地区的现代构造应力场[J]. 地震地质, 1986, 8(1): 15-23. XIANG Hong-fa, GUO Shun-min, RAN Yong-kang, et al. Recent tectonic stress field in the northwest of the Yunnan province[J]. Seismology and Geology, 1986, 8(1): 15-23 (in Chinese). [12] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. [13] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1): 113-157. [14] 徐强, 赵俊猛, 崔仲雄, 等. 利用接收函数研究青藏高原东南缘的地壳上地幔结构[J]. 地球物理学报, 2009, 52(12): 3001-3008. XU Qiang, ZHAO Jun-meng, CUI Zhong-xiong, et al. Structure of the crust and upper mantle beneath the southeastern Tibetan Plateau by P and S receiver functions[J]. Chinese Journal of Geophysics, 2009, 52(12): 3001-3008 (in Chinese). [15] 王帅军, 王夫运, 张建狮, 等. 利用宽角反射/折射地震剖面揭示芦山MS7.0地震震区深部孕震环境[J]. 地球物理学报, 2015, 58(9): 3193-3204. WANG Shuai-jun, WANG Fu-yun, ZHANG Jian-shi, et al. The deep seismogenic environment of Lushan MS7.0 earthquake zone revealed by a wide-angle reflection/refraction seismic profile[J]. Chinese Journal of Geophysics, 2015, 58(9): 3193-3204 (in Chinese). [16] Yao H J, van der Hilst R D, Montagner J. Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12307. [17] Bao X W, Sun X X, Xu M J, et al. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth and Planetary Science Letters, 2015, 415: 16-24. [18] Huang Z C, Wang L S, Xu M J, et al. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation[J]. Earth and Planetary Science Letters, 2015, 432: 354-362. [19] Yang Y, Yao H J, Wu H X, et al. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophysical Journal International, 2019, 220(2): 1379-1393. [20] Bai D H, Meju M A, Liao Z J, et al. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China[J]. Geophysical Journal International, 2001, 147(3): 677-687. [21] 金胜, 魏文博, 汪硕, 等. 青藏高原地壳高导层的成因及动力学意义探讨大地电磁探测提供的证据[J]. 地球物理学报, 2010, 53(10): 2376-2385. JIN Sheng, WEI Wen-bo, WANG Shuo, et al. Discussion of the formation and dynamic signification of the high conductive layer in Tibetan crust[J]. Chinese Journal of Geophysics, 2010, 53(10): 2376-2385 (in Chinese). [22] 白登海, 腾吉文, 马晓冰, 等. 大地电磁观测揭示青藏高原东部存在两条地壳物质流[J]. 中国基础科学, 2011, 13(1): 7-10. BAI Deng-hai, TENG Ji-wen, MA Xiao-bing, et al. Crust flow beneath eastern Tibetan Plateau revealed by magnetotelluric measurements[J]. China Basic Science, 2011, 13(1): 7-10 (in Chinese). [23] Wang Q, Zhang P Z, Freymueller J T, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542): 574-577. [24] Zhang P Z, Shen Z K, Wang M, et al. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 2004, 32(9): 809-812. [25] Jin H L, Gao Y, Su X N, et al. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data[J]. Earth and Planetary Physics, 2019, 3(1): 55-63. [26] 谢富仁, 祝景忠, 粱海庆, 等. 中国西南地区现代构造应力场基本特征[J]. 地震学报, 1993, 15(4): 407-417. XIE Fu-ren, ZHU Jing-zhong, LIANG Hai-qing, et al. Basic characteristics of modern tectonic stress field in southwest China[J]. Acta Seismologica Sinica, 1993, 15(4): 407-417 (in Chinese). [27] 谢富仁, 崔效锋, 赵建涛, 等. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 2004, 47(4): 654-662. XIE Fu-ren, CUI Xiao-feng, ZHAO Jian-tao, et al. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 2004, 47(4): 654-662 (in Chinese). [28] 崔效锋, 谢富仁, 张红艳. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 2006, 28(5): 451-461. CUI Xiao-feng, XIE Fu-ren, ZHANG Hong-yan. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 2006, 28(5): 451-461 (in Chinese). [29] Crampin S, McGonigle R, Bamford D. Estimating crack parameters from observations of P wave velocity anisotropy[J]. Geophysics, 1980, 45(3): 345-360. [30] Hirn A, Jiang M, Sapin M, et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet[J]. Nature, 1995, 375(6532): 571-574. [31] 高原, 滕吉文. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展, 2005, 20(1): 180-185. GAO Yuan, TENG Ji-wen. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics, 2005, 20(1): 180-185 (in Chinese). [32] Kong F, Wu J, Liu K H, et al. Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas[J]. Earth and Planetary Science Letters, 2016, 442: 72-79. [33] 高原, 石玉涛, 王琼. 青藏高原东南缘地震各向异性及其深部构造意义[J]. 地球物理学报, 2020, 63(3): 802-816. GAO Yuan, SHI Yu-tao, WANG Qiong. Seismic anisotropy in the southeastern margin of the Tibetan Plateau and its deep tectonic significances[J]. Chinese Journal of Geophysics, 2020, 63(3): 802-816 (in Chinese). [34] Shi Y T, Gao Y, Wu J, et al. Crustal seismic anisotropy in Yunnan, Southwestern China[J]. Journal of Seismology, 2009, 13(2): 287-299. [35] Shi Y T, Gao Y, Su Y J, et al. Shear-wave splitting beneath Yunnan area of Southwest China[J]. Earthquake Science, 2012, 25(1): 25-34. [36] Sun Y, Niu F L, Liu H F, et al. Crustal structure and deformation of the SE Tibetan plateau revealed by receiver function data[J]. Earth and Planetary Science Letters, 2012, 349-350: 186-197. [37] 孙长青, 雷建设, 李聪, 等. 云南地区地壳各向异性及其动力学意义[J]. 地球物理学报, 2013, 56(12): 4095-4105. SUN Chang-qing, LEI Jian-she, LI Cong, et al. Crustal anisotropy beneath the Yunnan region and dynamic implications[J]. Chinese Journal of Geophysics, 2013, 56(12): 4095-4105 (in Chinese). [38] 太龄雪, 高原, 刘庚, 等. 利用中国地震科学台阵研究青藏高原东南缘地壳各向异性: 第一期观测资料的剪切波分裂特征[J]. 地球物理学报, 2015, 58(11): 4079-4091. TAI Ling-xue, GAO Yuan, LIU Geng, et al. Crustal seismic anisotropy in the southeastern margin of the Tibetan Plateau by ChinaArray data: shear-wave splitting from temporary observations of the first phase[J]. Chinese Journal of Geophysics, 2015, 58(11): 4079-4091 (in Chinese). [39] Cai Y, Wu J P, Fang L H, et al. Crustal anisotropy and deformation of the southeastern margin of the Tibetan Plateau reveled by Pms splitting[J]. Journal of Asian Earth Sciences, 2016, 121: 120-126. [40] 张艺, 高原. 中国地震科学台阵两期观测资料近场记录揭示的南北地震带地壳剪切波分裂特征[J]. 地球物理学报, 2017, 60(6): 2181-2199. ZHANG Yi, GAO Yuan. The characteristics of crustal shear-wave splitting in North-South seismic zone revealed by near field recordings of two observation periods of ChinArray[J]. Chinese Journal of Geophysics, 2017, 60(6): 2181-2199 (in Chinese). [41] 常利军, 王椿镛, 丁志峰. 云南地区SKS波分裂研究[J]. 地球物理学报, 2006, 49(1): 197-204. CHANG Li-jun, WANG Chun-yong, DING Zhi-feng. A study on SKS splitting beneath the Yunnan region[J]. Chinese Journal of Geophysics, 2006, 49(1): 197-204 (in Chinese). [42] 常利军, 王椿镛, 丁志峰, 等. 喜马拉雅东构造结及周边地区上地幔各向异性[J]. 中国科学: 地球科学, 2015, 45(5): 577-588. CHANG Li-jun, WANG Chun-yong, DING Zhi-feng, et al. Upper mantle anisotropy of the eastern Himalayan syntaxis and surrounding regions from shear wave splitting analysis[J]. Science China: Earth Sciences, 2015, 45(5): 577-588 (in Chinese). [43] 常利军, 丁志峰, 王椿镛. 南北构造带南段上地幔各向异性特征[J]. 地球物理学报, 2015, 58(11): 4052-4067. CHANG Li-jun, DING Zhi-feng, WANG Chun-yong. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China[J]. Chinese Journal of Geophysics, 2015, 58(11): 4052-4067 (in Chinese). [44] Chen Y, Badal J, Zhang Z J. Radial anisotropy in the crust and upper mantle beneath the Qinghai-Tibet Plateau and surrounding regions[J]. Journal of Asian Earth Sciences, 2009, 36(4-5): 289-302. [45] 黎源, 雷建设. 青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究[J]. 地球物理学报, 2012, 55(11): 3615-3624. LI Yuan, LEI Jian-she. Velocity and anisotropy structure of the uppermost mantle under the eastern Tibetan plateau inferred from Pn tomography[J]. Chinese Journal of Geophysics, 2012, 55(11): 3615-3624 (in Chinese). [46] 鲁来玉, 何正勤, 丁志峰, 等. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 2014, 57(3): 822-836. LU Lai-yu, HE Zheng-qin, DING Zhi-feng, et al. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 2014, 57(3): 822-836 (in Chinese). [47] 王琼, 高原, 石玉涛. 青藏高原东南缘基于背景噪声的Rayleigh面波方位各向异性研究[J]. 地球物理学报, 2015, 58(11): 4068-4078. WANG Qiong, GAO Yuan, SHI Yu-tao. Rayleigh wave azimuthal anisotropy on the southeastern front of the Tibetan Plateau from seismic ambient noise[J]. Chinese Journal of Geophysics, 2015, 58(11): 4068-4078 (in Chinese). [48] 国家地震局《中国岩石圈动力学地图集》编委会. 中国岩石圈动力学地图集[M]. 北京: 中国地图出版社, 1989. Editorial Board for Lithspheric Dynamics Atlas of China, State Seismological Bureau. Lithspheric dynamics atlas of China[M]. Beijing: China Cartographic Publishing House, 1989 (in Chinese). [49] 虢顺民, 向宏发, 计凤桔, 等. 红河断裂带第四纪右旋走滑与尾端拉张转换关系研究[J]. 地震地质, 1996, 18(4): 301-309. GUO Shun-min, XIANG Hong-fa, JI Feng-ju, et al. A study on the relation between quaternary right-lateral slip and tip extension along the Honghe fault[J]. Seismology and Geology, 1996, 18(4): 301-309 (in Chinese). [50] Allen C R, Gillespie A R, Yuan H, et a1. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 1984, 95(6): 686-700. [51] 何希虎, 周瑞琦, 张双林, 等. 红河断裂带地震地质特征[J]. 云南地质, 1983, 2(2): 88-101. HE Xi-hu, ZHOU Rui-qi, ZHANG Shuang-lin, et al. Seismic and geological characteristics of Honghe fault zone[J]. Yunnan Geology, 1983, 2(2): 88-101 (in Chinese). [52] 虢顺民, 计凤桔, 向宏发, 等. 红河活动断裂带[M]. 北京: 海洋出版社, 2001. GUO Shun-min, JI Feng-ju, XIANG Hong-fa, et al. Honghe Active Fault Zone[M]. Beijing: China Ocean Press, 2001 (in Chinese). [53] 向宏发, 韩竹军, 虢顺民, 等. 红河断裂带大型右旋走滑运动定量研究的若干问题[J]. 地球科学进展, 2004, 19(S1): 56-59. XIANG Hong-fa, HAN Zhu-jun, GUO Shun-min, et al. Processing about quantitative study of large-scale strike-slip movement on Red River fault zone[J]. Advance in Earth Sciences, 2004, 19(S1): 56-59 (in Chinese). [54] 李亚敏, 徐辉龙, 孙金龙, 等. 红河断裂带及其邻区的震源机制解特征及其反映的断裂活动分段性[J]. 热带海洋学报, 2008, 27(2): 32-39. LI Ya-min, XU Hui-long, SUN Jin-long, et al. Characteristics of focal mechanism solutions of Red River fault zone and their reflection on segmented fault activity[J]. Journal of Tropical Oceanography, 2008, 27(2): 32-39 (in Chinese). [55] Wang W L, Wu J P, Fang L H, et al. Crustal thickness and Poisson’s ratio in southwest China based on data from dense seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7219-7235. [56] Zhang Z Q, Gao Y. Crustal thickness and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau[J]. Earth and Planetary Physics, 2019, 3(1): 69-84. [57] 王夫运, 潘素珍, 刘兰, 等. 玉溪—临沧剖面宽角地震探测红河断裂带及滇南地壳结构研究[J]. 地球物理学报, 2014, 57(10): 3247-3258. WANG Fu-yun, PAN Su-zhen, LIU Lan, et al. Wide angle seismic exploration of Yuxi-Lincang profile: The research of crustal structure of the red river fault zone and southern Yunnan[J]. Chinese Journal of Geophysics, 2014, 57(10): 3247-3258 (in Chinese). [58] 徐志萍, 王夫运, 姜磊, 等. 川滇地区莫霍面深度和地壳厚度[J]. 地震地质, 2018, 40(6): 1318-1331. XU Zhi-ping, WANG Fu-yun, JIANG Lei, et al. The depth of Moho interface and crustal thickness in Sichuan-Yunnan region, China[J]. Seismology and Geology, 2018, 40(6): 1318-1331 (in Chinese). [59] 王帅军, 王夫运, 张建狮, 等. 利用宽角反射/折射地震剖面揭示芦山MS7.0地震震区深部孕震环境[J]. 地球物理学报, 2015, 58(9): 3193-3204. WANG Shuai-jun, WANG Fu-yun, ZHANG Jian-shi, et al. The deep seismogenic environment of Lushan MS7.0 earthquake zone revealed by a wide-angle reflection/refraction seismic profile[J]. Chinese Journal of Geophysics, 2015, 58(9): 3193-3204 (in Chinese). [60] 王阎昭, 王恩宁, 沈正康, 等. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学(D辑), 2008, 38(5): 582-597. WANG Yan-zhao, WANG En-ning, SHEN Zheng-kang, et al. Inversion of current activity rates of major faults in Sichuan-Yunnan area based on GPS data[J]. Science in China (Series D), 2008, 38(5): 582-597 (in Chinese). [61] 王启梁, 曹新菊, 马敏. 红河断裂带的近代形变特征[J]. 地壳形变与地震, 1989, 9(1): 1-12. WANG Qi-liang, CAO Xin-ju, MA min. Features of the recent crustal deformation on the Red-River fault zone[J]. Crustal Deformation and Earthquake, 1989, 9(1): 1-12 (in Chinese). [62] 向宏发, 虢顺民, 徐锡伟, 等. 川滇南部地区活动地块划分与现今运动特征初析[J]. 地震地质, 2000, 22(3): 253-264. XIANG Hong-fa, GUO Shun-min, XU Xi-wei, et al. Active block division and present-day motion features of the south region of Sichuan-Yunnan province[J]. Seismology and Geology, 2000, 22(3): 253-264 (in Chinese). [63] 朱俊江, 詹文欢, 丘学林, 等. 红河断裂带两侧地震震源机制及构造意义[J]. 大地构造与成矿学, 2004, 28(3): 239-247. ZHU Jun-jiang, ZHAN Wen-huan, QIU Xue-lin, et al. Earthquake focal mechanism and its tectonic significance along the two sides of the Red River fault zone[J]. Geotectonica et Metallogenia, 2004, 28(3): 239-247 (in Chinese). [64] 曹忠权, 申旭辉, 宋方敏, 等. 1500年云南宜良地震的发震构造[J]. 地震研究, 1996, 19(2): 184-191. CAO Zhong-quan, SHEN Xu-hui, SONG Fang-min, et al. Seismogenic structure of Yunnan Yiliang earthquake in 1500[J]. Journal of Seismological Research, 1996, 19(2): 184-191 (in Chinese). [65] 何宏林, 方仲景, 李玶. 小江断裂带西支断裂南段新活动初探[J]. 地震研究, 1993, 16(3): 291-298. HE Hong-lin, FANG Zhong-jing, LI Ping. A preliminary approach to the fault activity of southern segment on Xiaojiang west branch fault[J]. Journal of Seismological Research, 1993, 16(3): 291-298 (in Chinese). [66] 宋方敏, 汪一鹏, 俞维贤, 等. 小江活动断裂带[M]. 北京: 地震出版社, 1998. SONG Fang-min, WANG Yi-peng, YU Wei-xian, et al. Xiaojiang Active Fault Zone[M]. Beijing: Seismological Press, 1998 (in Chinese). [67] 李玶. 鲜水河一小江断裂带[M]. 北京: 地震出版社, 1993. LI Ping. Xianshuihe-Xiaojiang Fault Zone[M]. Beijing: Seismological Press, 1993 (in Chinese). [68] 徐青, 汪缉安, 汪集旸, 等. 云南大地热流及其大地构造意义[J]. 大地构造与成矿学, 1992, 16(3): 285-299. XU Qing, WANG Ji-an, WANG Ji-chang, et al. Terrestral heat flow and its tectonic significance in Yunnan, China[J]. Geotectonica et Metallogenia, 1992, 16(3): 285-299 (in Chinese). [69] 何宏林, 池田安隆, 宋方敏, 等. 小江断裂带第四纪晚期左旋走滑速率及其构造意义[J]. 地震地质, 2002, 24(1): 14-26. HE Hong-lin, Yasutaka Ikeda, SONG Fang-min, et al. Late quaternary slip rate of the Xiaojiang fault and its implication[J]. Seismology and Geology, 2002, 24(1): 14-26 (in Chinese). [70] 吴建平, 明跃红, 王椿镛. 云南数字地震台站下方的S波速度结构研究[J]. 地球物理学报, 2001, 44(2): 228-237. WU Jian-ping, MING Yue-hong, WANG Chun-yong. The S wave velocity structure beneath digital seismic stations of Yunnan province inferred from teleseismic receiver function modelling[J]. Chinese Journal of Geophysics, 2001, 44(2): 228-237 (in Chinese). [71] 吴建平, 杨婷, 王未来, 等. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报, 2013, 56(7): 2257-2267. WU Jian-ping, YANG Ting, WANG Wei-lai, et al. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics, 2013, 56(7): 2257-2267 (in Chinese). [72] 王椿镛, Mooney W D, 王溪莉, 等. 川滇地区地壳上地幔三维速度结构研究[J]. 地震学报, 2002, 24(1): 1-16. WANG Chun-yong, Mooney W D, WANG Xi-li, et al. Study on 3-D velocity structure of crust and upper mantle in Sichuan-Yunnan region, China[J]. Acta Seismologica Sinica, 2002, 24(1): 1-16 (in Chinese). [73] Yao H Y, Beghein C, van der Hilst R D. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure[J]. Geophysical Journal International, 2008, 173(1): 205-219. [74] 韦伟, 孙若昧, 石耀霖. 青藏高原东南缘地震层析成像及汶川地震成因探讨[J]. 中国科学: 地球科学, 2010, 40(7): 831-839. WEI Wei, SUN Ruo-mei, SHI Yao-lin, et al. P-wave tomographic images beneath southeastern Tibet: Investigating the mechanism of the 2008 Wenchuan earthquake[J]. Science China: Earth Sciences, 2010, 40(7): 831-839 (in Chinese). [75] 王琼, 高原. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学: 地球科学, 2014, 44(11): 2440-2450. WANG Qiong, GAO Yuan. Rayleigh wave phase velocity tomography and stronge earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China: Earth Sciences, 2014, 44(11): 2440-2450 (in Chinese). [76] 李永华, 吴庆举, 田小波, 等. 用接收函数方法研究云南及其邻区地壳上地幔结构[J]. 地球物理学报, 2009, 52(1): 67-80. LI Yong-hua, WU Qing-ju, TIAN Xiao-bo, et al. Crustal structure in the Yunnan region determined by modeling receiver functions[J]. Chinese Journal of Geophysics, 2009, 52(1): 67-80 (in Chinese). [77] 向宏发, 徐锡伟, 虢顺民, 等. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义陆内活动地块横向构造的屏蔽作用[J]. 地震地质, 2002, 24(2): 188-198. XIANG Hong-fa, XU Xi-wei, GUO Shun-min, et al. Sinistral thrusting along the Lijiang-Xiaojiang fault since quaternary and its geologic-tectonic significance: Shielding effect of transverse structure of intracontinental active block[J]. Seismology and Geology, 2002, 24(2): 188-198 (in Chinese). [78] 丁锐, 任俊杰, 张世民, 等. 丽江—小金河断裂中段晚第四纪古地震历史[J]. 地震地质, 2018, 40(3): 622-640. DING Rui, REN Jun-jie, ZHANG Shi-min, et al. Late quaternary paleoearthquakes on the middle segment of the Lijiang-Xiaojiang fault, southeastern Tibet[J]. Seismology and Geology, 2018, 40(3): 622-640 (in Chinese). [79] 丰成君, 陈群策, 李国歧, 等. 青藏高原东南缘丽江—剑川地区地应力测量与地震危险性[J]. 地质通报, 2014, 33(4): 524-534. FENG Cheng-jun, CHEN Qun-ce, LI Guo-qi, et al. In-situ stress measurement in Lijiang-Jianchuan area and tentative discussion on the seismic hazards on the southeastern margin of the Tibetan Plateau[J]. Geological Bulletin of China, 2014, 33(4): 524-534 (in Chinese). [80] 许志琴, 李化启, 侯立炜, 等. 青藏高原东缘龙门—锦屏造山带的崛起大型拆离断层和挤出机制[J]. 地质通报, 2007, 26(10): 1262-1276. XU Zhi-qin, LI Hua-qi, HOU Li-wei, et al. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism[J]. Geological Bulletin of China, 2007, 26(10): 1262-1276 (in Chinese). [81] Wu Y, Gao Y. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth and Planetary Physics, 2019, 3(5): 425-434. [82] 徐锡伟, 闻学泽, 郑荣章, 等. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学(D辑), 2003, 33(S1): 151-162. XU Xi-wei, WEN Xue-ze, ZHENG Rong-zhang, et al. The latest tectonic change patterns and power sources of active blocks in Sichuan-Yunnan area[J]. Science in China (Series D), 2003, 33(S1): 151-162 (in Chinese). [83] Tian J H, Luo Y, Zhao L. Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes[J]. Earth and Planetary Physics, 2019, 3(3): 243-252. [84] Shen Z K, Lü J N, Wang M, et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11409. [85] 程佳, 徐锡伟, 甘卫军, 等. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源[J]. 地球物理学报, 2012, 55(4): 1198-1212. CHENG Jia, XU Xi-wei, GAN Wei-jun, et al. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 2012, 55(4): 1198-1212 (in Chinese). [86] Tapponnier P, Zhiqin X, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. [87] 李安, 张世民, 丁锐, 等. 丽江—小金河断裂南段全新世古地震研究[J]. 地壳构造与地壳应力文集, 2016, 27(1): 1-9. LI An, ZHANG Shi-min, DING Rui, et al. A paleoseismic research of the south segment of the Lijiang-Xiaojinhe fault in the Holocene[J]. Bulletin of the Institute of Crustal Dynamics, 2016, 27(1): 1-9 (in Chinese). [88] 王运生, 王士天, 李渝生. 丽江7.0级大震发震机制新见[J]. 西北地震学报, 2000, 22(4): 442-446. WANG Yun-sheng, WANG Shi-tian, LI Yu-sheng. A new idea on the mechanism of Lijiang MS7.0 earthquake[J]. Northwestern Seismological Journal, 2000, 22(4): 442-446 (in Chinese). [89] 韩竹军, 虢顺民, 向宏发, 等. 1996年2月3日云南丽江7.0级地震发生的构造环境[J]. 地震学报, 2004, 26(4): 410-418. HAN Zhu-jun, GUO Shun-min, XIANG Hong-fa, et al. Seismotectonic environment of occurring the February 3, 1996 Lijiang M=7.0 earthquake, Yunnan province[J]. Acta Seismological Sinica, 2004, 26(4): 410-418 (in Chinese). [90] 李宁, 朱良玉, 刘雷. 丽江—小金河断裂带现今闭锁程度与地震危险性分析[J]. 地震研究, 2018, 41(2): 244-250. LI Ning, ZHU Liang-yu, LIU Lei. Study on present-day locking degree and seismic hazard of the Lijiang-Xiaojinhe fault zone[J]. Journal of Seismological Research, 2018, 41(2): 244-250 (in Chinese). [91] 李玶, 汪良谋. 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 1975, (4): 308-326. LI Ping, WANG Liang-mou. Exploration of the seismo-geological features of the Yunnan-west Sichuan region[J]. Scientia Geologica Sinica, 1975, (4): 308-326 (in Chinese). [92] Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. Journal of Geophysical Research, 2007, 112: B08416. [93] Zhang P Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2013, 584: 7-22. [94] 甘卫军, 沈正康, 张培震, 等. 青藏高原地壳水平差异运动的GPS观测研究[J]. 大地测量与地球动力学, 2004, 24(1): 29-35. GAN Wei-jun, SHEN Zheng-kang, ZHANG Pei-zhen, et al. Horizontal crustal movement of Tibetan Plateau from GPS measurements[J]. Journal of Geodesy and Geodynamics, 2004, 24(1): 29-35 (in Chinese). [95] 徐锡伟, 陈桂华, 王启欣, 等. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 2017, 60(10): 4018-4026. XU Xi-wei, CHEN Gui-hua, WANG Qi-xin, et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018-4026 (in Chinese). [96] 伍吉仓, 王岩, 吴伟伟. 青藏高原东南缘现今地壳运动速度场分析[J]. 大地测量与地球动力学, 2018, 38(2): 116-124. WU Ji-cang, WANG Yan, WU Wei-wei. Analysis of current crustal movement velocity field of south-eastern Tibetan Plateau[J]. Journal of Geodesy and Geodynamics, 2018, 38(2): 116-124 (in Chinese). [97] 侯强, 邹文远, 欧明霖, 等. 青藏高原东南缘壳幔力学耦合及其动力学意义[J]. 大地测量与地球动力学, 2018, 38(10): 991-1000. HOU Qiang, ZOU Wen-yuan, OU Ming-lin, et al. Mechanical coupling in southeastern Qinghai-Tibetan Plateau and its geodynamic implications[J]. Journal of Geodesy and Geodynamics, 2018, 38(10): 991-1000 (in Chinese). [98] 鄢家全, 时振梁, 汪素云, 等. 中国及邻区现代构造应力场的区域特征[J]. 地震学报, 1979, 1(1): 9-24. YAN Jia-quan, SHI Zhen-liang, WANG Su-yun, et al. Some features of the recent tectonic stress field of China and environs[J]. Acta Seismologica Sinica, 1979, 1(1): 9-24 (in Chinese). [99] 程万正, 刁桂苓, 吕弋培, 等. 川滇地块的震源力学机制、 运动速率和活动方式[J]. 地震地质, 2003, 25(1): 71-87. CHENG Wan-zheng, DIAO Gui-ling, Lü Yi-pei, et al. Focal mechanisms, displacement rate and mode of motion of the Sichuan-Yunnan block[J]. Seismology and Geology, 2003, 25(1): 71-87 (in Chinese). [100] 钟继茂, 程万正. 由多个地震震源机制解求川滇地区平均应力场方向[J]. 地震学报, 2006, 28(4): 337-346. ZHONG Ji-mao, CHENG Wan-zheng. Determination of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions[J]. Acta Seismologica Sinica, 2006, 28(4): 337-346 (in Chinese). [101] 吴建平, 明跃红, 王椿镛. 云南地区中小地震震源机制及构造应力场研究[J]. 地震学报, 2004, 26(5): 457-465. WU Jian-ping, MING Yue-hong, WANG Chun-yong. Source mechanism of small-moderate earthquake and tectonic stress field in Yunnan province[J]. Acta Seismologica Sinica, 2004, 26(5): 457-465 (in Chinese). [102] 钱晓东, 秦嘉政, 刘丽芳. 云南地区现代构造应力场研究[J]. 地震地质, 2011, 33(1): 91-106. QIAN Xiao-dong, QIN Jia-zheng, LIU Li-fang. Study on recent tectonic stress field in Yunnan region[J]. Seismology and Geology, 2011, 33(1): 91-106 (in Chinese). [103] 曹颖, 吴小平, 沈娅宏, 等. 由震源机制解资料研究川滇地区构造应力场[J]. 地震研究, 2013, 36(2): 165-172. CAO Ying, WU Xiao-ping, SHEN Ya-hong, et al. Research on structural stress field basing on focal mechanism solutions data in Sichuan-Yunnan area[J]. Journal of Seismological Research, 2013, 36(2): 165-172 (in Chinese). [104] 阚荣举, 王绍晋, 黄崐, 等. 中国西南地区现代构造应力场与板内断块相对运动[J]. 地震地质, 1983, 5(2): 79-90. KAN Rong-ju, WANG Shao-jin, HUANG Kung, et al. Modern tectonic stress field and relative motion of intraplate block in southwestern China[J]. Seismology and Geology, 1983, 5(2): 79-90 (in Chinese). [105] 许忠淮, 汪素云, 黄雨蕊, 等. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J]. 地球物理学报, 1987, 30(5): 476-486. XU Zhong-huai, WANG Su-yun, HUANG Yu-rui, et al. Directions of mean stress axes in southwestern China deduced from microearthquake data[J]. Chinese Journal of Geophysics, 1987, 30(5): 476-486 (in Chinese). [106] 王苏, 徐晓雅, 胡家富. 青藏高原东南缘的地壳结构与动力学模式研究综述[J]. 地球物理学报, 2015, 58(11): 4235-4253. WANG Su, XU Xiao-ya, HU Jia-fu. Review on the study of crustal structure and geodynamic models for the southeast margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2015, 58(11): 4235-4253 (in Chinese). [107] 白志明, 王椿镛. 云南地区上部地壳结构和地震构造环境的层析成像研究[J]. 地震学报, 2003, 25(2): 117-127. BAI Zhi-ming, WANG Chun-yong. Tomographic investigation of the upper crustal structure and seismotectonic environments in Yunnan province[J]. Acta Seismologica Sinica, 2003, 25(2): 117-127 (in Chinese). [108] 王椿镛, 吴建平, 楼海, 等. 川西藏东地区的地壳P波速度结构[J]. 中国科学(D辑), 2003, 33(S1): 181-189. WANG Chun-yong, WU Jian-ping, LOU Hai, et al. Crustal P-wave velocity structure in eastern Sichuan and Tibet[J]. Science in China (Series D), 2003, 33(S1): 181-189 (in Chinese). [109] 张中杰, 白志明, 王椿镛, 等. 三江地区地壳结构及动力学意义: 云南遮放—宾川地震反射/折射剖面的启示[J]. 中国科学(D辑), 2005, 35(4): 314-319. ZHANG Zhong-jie, BAI Zhi-ming, WANG Chun-yong, et al. Crustal structure and dynamic significance in Sanjiang area: Enlightenment from Zhafang-Binchuan seismic reflection/refraction profile in Yunnan[J]. Science in China (Series D), 2005, 35(4): 314-319 (in Chinese). [110] 徐涛, 张忠杰, 刘宝峰, 等. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江—清镇宽角地震资料的约束[J]. 中国科学: 地球科学, 2015, 45(5): 561-576. XU Tao, ZHANG Zhong-jie, LIU Bao-feng, et al. Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity[J]. Science China: Earth Sciences, 2015, 45(5): 561-576 (in Chinese). [111] Wang C Y, Lou H, Silver P G, et al. Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications[J]. Earth and Planetary Science Letters, 2010, 289(3-4): 367-376. [112] 刘建华, 刘福田, 吴华, 等. 中国南北带地壳和上地幔的三维速度图象[J]. 地球物理学报, 1989, 32(2): 143-152. LIU Jian-hua, LIU Fu-tian, WU Hua, et al. Three dimensional velocity images of the crust and upper mantle beneath north-south zone in China[J]. Chinese Journal of Geophysics, 1989, 32(2): 143-152 (in Chinese). [113] 范莉苹, 吴建平, 房立华. 青藏高原东南缘远震P波层析成像研究[J]. CT理论与应用研究, 2015, 24(2): 209-223. FAN Li-ping, WU Jian-ping, FANG Li-hua. Teleseismic P wave tomography in the southeast margin of the Tibetan Plateau[J]. CT Theory and Applications, 2015, 24(2): 209-223 (in Chinese). [114] Li C, van der Hilst R D, Meltzer A S, et al. Subduction of the Indian lithosphere beneath the Tibetan plateau and Burma[J]. Earth and Planetary Science Letters, 2008, 274(1-2): 157-168. [115] Wang Z, Zhao D P, Wang J. Deep structure and seismogenesis of the north-south seismic zone in southwest China[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12334. [116] Yang H Y, Peng H C, Hu J F. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. Journal of Asian Earth Sciences, 2017, 138: 62-71. [117] Mainprice D, Silver P G. Interpretation of SKS-waves using samples from the subcontinental lithosphere[J]. Physics of the Earth and Planetary Interiors, 1993, 78(3-4): 257-280. [118] Tatham D J, Lloyd G E, Butler R W H, et al. Amphibole and lower crustal seismic properties[J]. Earth and Planetary Science Letters, 2008, 267(1-2): 118-128. [119] Jung H. Deformation fabrics of olivine in Val Malenco peridotite found in Italy and implications for the seismic anisotropy in the upper mantle[J]. Lithos, 2009, 109(3): 341-349. [120] Lloyd G E, Butler R W H, Casey M, et al. Constraints on the seismic properties of the middle and lower continental crust[J]. Geological Society, London, Special Publications, 2011, 360(1): 7-32. [121] Crampin S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4): 343-391. [122] Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophysical Journal International, 1984, 76(1): 135-145. [123] Crampin S, Gao Y. Two species of microcracks[J]. Applied Geophysics, 2014, 11(1): 1-8. [124] Gao Y, Wu J. Compressive stress field in the crust deduced from shear-wave anisotropy: An example in capital area of China[J]. Chinese Science Bulletin, 2008, 53(18): 2840-2848. [125] Gao Y, Wu J, Fukao Y, et al. Shear wave splitting in the crust in North China: Stress, faults and tectonic implications[J]. Geophysical Journal International, 2011, 187(2): 642-654. [126] 石玉涛, 高原, 吴晶, 等. 云南地区地壳介质各向异性快剪切波偏振特性[J]. 地震学报, 2006, 28(6): 574-585. SHI Yu-tao, GAO Yuan, WU Jing, et al. Seismic anisotropy of the crust in Yunnan, China: Polarizations of fast shear-waves[J]. Acta Seismologica Sinica, 2006, 28(6): 574-585 (in Chinese). [127] Crampin S, Peacock S. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation[J]. Wave Motion, 2008, 45(6): 675-722. [128] Rabbel W, Mooney W D. Seismic anisotropy of the crystalline crust: What does it tell us?[J]. Terra Nova, 1996, 8(1): 16-21. [129] Barruol G, Mainprice D. A quantitative evaluation of the contribution of crustal rocks to the shear-wave splitting of teleseismic SKS waves[J]. Physics of the Earth and Planetary Interiors, 1993, 78(3-4): 281-300. [130] Silver P G, Chan W W. Shear wave splitting and subcontinental mantle deformation[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16429-16454. [131] 王椿镛, 常利军, 吕智勇, 等. 青藏高原东部上地幔各向异性及相关的壳幔耦合型式[J]. 中国科学(D辑), 2007, 37(4): 495-503. WANG Chun-yong, CHANG Li-jun, LÜ Zhi-yong, et al. Upper mantle anisotropy and related crust-mantle coupling patterns in the eastern Tibetan Plateau[J]. Science in China (Series D), 2007, 37(4): 495-503 (in Chinese). [132] Silver P G. Seismic anisotropy beneath the continents: Probing the depths of geology[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 385-432. [133] McNamara D E, Owens T J. Azimuthal shear wave velocity anisotropy in the Basin and Range Province using moho Ps converted phases[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 12003-12017. [134] Pei S P, Zhao J M, Sun Y S, et al. Upper mantle seismic velocities and anisotropy in China determined through Pn and Sn tomography[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05312. [135] Wang J, Zhao D P. P-wave anisotropic tomography beneath Northeast Japan[J]. Physics of the Earth and Planetary Interiors, 2008, 170(1-2), 115-133. [136] Wei W, Zhao D P, Xu J D, et al. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3): 1642-1666. [137] Lev E, Long M D, van der Hilst R D. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation[J]. Earth and Planetary Science Letters, 2006, 251(3-4): 293-304. [138] 高原, 刘希强, 梁维, 等. 剪切波分裂系统分析方法(SAM)软件系统[J]. 中国地震, 2004, 20(1): 101-107. GAO Yuan, LIU Xi-qiang, LIANG Wei, et al. Systematic analysis method of shear-wave splitting: SAM software system[J]. Earthquake Research in China, 2004, 20(1): 101-107 (in Chinese). [139] 徐震, 徐鸣洁, 王良书, 等. 用接收函数Ps转换波研究地壳各向异性以哀牢山—红河断裂带为例[J]. 地球物理学报, 2006, 49(2): 438-448. XU Zhen, XU Ming-jie, WANG Liang-shu, et al. A study on crustal anisotropy using P to S converted phase of the receiver function: Application to Ailaoshan-Red River fault zone[J]. Chinese Journal of Geophysics, 2006, 49(2): 438-448 (in Chinese). [140] 李飞, 周仕勇, 苏有锦, 等. 川滇及邻区Pn波速度结构和各向异性研究[J]. 地球物理学报, 2011, 54(1): 44-54. LI Fei, ZHOU Shi-yong, SU You-jing, et al. Study on Pn-wave velocity structure and anisotropy in the Sichuan-Yunnan and its adjacent areas[J]. Chinese Journal of Geophysics, 2011, 54(1): 44-54 (in Chinese). [141] Sol S, Meltzer A, Bürgmann R, et al. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology, 2007, 35(6): 563-566. [142] 高原, 吴晶, 易桂喜, 等. 从壳幔地震各向异性初探华北地区壳幔耦合关系[J]. 科学通报, 2010, 55(29): 2837-2843. GAO Yuan, WU Jing, YI Gui-xi, et al. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin, 2010, 55(29): 2837-2843 (in Chinese). [143] Wang Q, Niu F L, Gao Y, et al. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data[J]. Geophysical Journal International, 2016, 204(1): 167-179. [144] 张艺, 高原, 赵镇岭. 川滇地区壳幔地震各向异性研究进展[J]. 中国地震, 2018, 34(2): 207-218. ZHANG Yi, GAO Yuan, ZHAO Zhen-ling. Reviews on the seismic anisotropy in the crust and matle of Sichuan-Yunnan area, China[J]. Earthquake Research in China, 2018, 34(2): 207-218 (in Chinese). [145] Crampin S, Chastin S. A review of shear wave splitting in the crack-critical crust[J]. Geophysical Journal International, 2013, 155(1): 221-240. [146] 李白基, 秦嘉政, 钱晓东. 1995年武定6.5级地震余震的S波分裂[J]. 地震研究, 2002, 25(2): 108-114. LI Bai-ji, QIN Jia-zheng, QIAN Xiao-dong, et al. Shear-wave splitting of the aftershocks for the 1995 earthquake of Yunnan Wuding[J]. Journal of Seismological Research, 2002, 25(2): 108-114 (in Chinese). [147] 钱晓东, 李白基, 秦嘉政. 2000年云南姚安MS6.5地震余震序列S波分裂研究[J]. 中国地震, 2002, 18(2): 157-165. QIAN Xiao-dong, LI Bai-ji, QIN Jia-zheng. Study on shear wave splitting for sequence of the aftershocks of Yao’an MS6.5 earthquake in Yunnan[J]. Earthquake Research in China, 2002, 18(2): 157-165 (in Chinese). [148] 王新岭, 刘杰, 张国民, 等. 2000年姚安地震余震序列的剪切波分裂研究[J]. 地震学报, 2006, 28(2): 119-131. WANG Xin-ling, LIU Jie, ZHANG Guo-min, et al. Study on shear wave splitting in the aftershock region of the Yao’an earthquake in 2000[J]. Acta Seismologica Sinica, 2006, 28(2): 119-131 (in Chinese). [149] 高原, 梁维, 丁香, 等. 云南2001年施甸地震的剪切波分裂参数变化特征[J]. 地震学报, 2004, 26(6): 576-582. GAO Yuan, LIANG Wei, DING Xiang, et al. Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China[J]. Acta Seismologica Sinica, 2004, 26(6): 576-582 (in Chinese). [150] 邬成栋, 秦嘉政, 皇甫岗. 永胜6.0级地震的余震S波分裂研究[J]. 地震研究, 2004, 27(2): 140-145. WU Cheng-dong, QIN Jia-zheng, HUANG Fu-gang. Shear wave splitting of aftershocks of M6.0 Yongsheng earthquake[J]. Journal of Seismological Research, 2004, 27(2): 140-145 (in Chinese). [151] 常利军, 丁志峰, 王椿镛. 2013年芦山MS7.0地震震源区横波分裂的变化特征[J]. 中国科学: 地球科学, 2015, 45(2): 161-168. CHANG Li-jun, DING Zhi-feng, WANG Chun-yong. Variations of shear wave splitting in the 2013 Lushan MS7.0 earthquake region[J]. Science China: Earth Sciences, 2015, 45(2): 161-168 (in Chinese). [152] 吴朋, 陈天长, 赵翠萍, 等. 2013年芦山MS7.0地震序列S波分裂特征[J]. 地震学报, 2016, 38(5): 703-718. WU Peng, CHEN Tian-chang, ZHAO Cui-ping, et al. Characteristics of shear-wave splitting for the 2013 Lushan MS7.0 earthquake sequence[J]. Acta Seismologica Sinica, 2016, 38(5): 703-718 (in Chinese). [153] Zhao B, Shi Y T, Gao Y. Seismic relocation, focal mechanism and crustal seismic anisotropy associated with the 2010 Yushu MS7.1 earthquake and its aftershocks[J]. Earthquake Science, 2012, 25(1): 111-119. [154] 郑拓, 丁志峰, 常利军, 等. 汶川地震断裂带科学深钻WFSD-3附近上地壳S波分裂特征[J]. 地球物理学报, 2017, 60(5): 1690-1702. ZHENG Tuo, DING Zhi-feng, CHANG Li-jun, et al. S-wave splitting in upper crust near the scientific drilling WFSD-3 at the Wenchuan earthquake fault zone[J]. Chinese Journal of Geophysics, 2017, 60(5): 1690-1702 (in Chinese). [155] 秦嘉政, 钱晓东, 叶建庆. 云南地震监测台网进展与强震活动特征分析[J]. 地震研究, 2012, 35(4): 441-448. QIN Jia-zheng, QIAN Xiao-dong, YE Jian-qing. Development of seismic monitoring network and characteristics analyze of strong earthquake activities in Yunnan[J]. Journal of Seismological Research, 2012, 35(4): 441-448 (in Chinese). [156] Gao Y, Shi Y T, Wu J, et al. Shear-wave splitting in the crust: Regional compressive stress from polarizations of fast shear-waves[J]. Earthquake Science, 2012, 25(1): 35-45. [157] Gao Y, Chen A G, Shi Y T, et al. Preliminary analysis of crustal shear-wave splitting in the Sanjiang lateral collision zone of the southeast margin of the Tibetan Plateau and its tectonic implications[J]. Geophysical Prospecting, 2019, 67(9): 2432-2449. [158] Zhang M, Wen L X. High-precision location and yield of North Korea’s 2013 nuclear test[J]. Geophysical Research Letters, 2013, 40(12): 2941-2946. [159] Zhang M, Wen L X. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea[J]. Seismological Research Letters, 2015, 86(1): 138-145. [160] Zhang M, Wen L X. An effective method for small event detection: match and locate (M&L)[J]. Geophysical Journal International, 2015, 200(3): 1523-1537. [161] Liu H F, Niu F L. Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data[J]. Geophysical Journal International, 2012, 188(1): 144-164. [162] Chen Y, Zhang Z J, Sun C Q, et al. Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions[J]. Gondwana Research, 2013, 24(3-4): 946-957. [163] Yang Y H, Zhu L B, Su Y J, et al. Crustal anisotropy estimated by splitting of Ps-converted waves on seismogram and an application to SE Tibetan plateau[J]. Journal of Asian Earth Science, 2015, 106: 216-228. [164] 黄金莉, 宋晓东, 汪素云. 川滇地区上地幔顶部Pn速度细结构[J]. 中国科学(D辑), 2003, 33(S1): 144-150. HUANG Jin-li, SONG Xiao-dong, WANG Su-yun. Fine structure of Pn velocity at the top of upper mantle in Sichuan-Yunnan area[J]. Science in China (Series D), 2003, 33(S1): 144-150 (in Chinese). [165] 崔仲雄, 裴顺平. 青藏高原东构造结及周边地区上地幔顶部Pn速度结构和各向异性研究[J]. 地球物理学报, 2009, 52(9): 2245-2254. CUI Zhong-xiong, PEI Shun-ping. Study on Pn velocity and anisotropy in the uppermost mantle of the Eastern Himalayan Syntaxis and surrounding regions[J]. Chinese Journal of Geophysics, 2009, 52(9): 2245-2254 (in Chinese). [166] 郭飚, 刘启元, 陈九辉, 等. 中国大陆及邻区上地幔P波各向异性结构[J]. 地球物理学报, 2012, 55(12): 4106-4115. GUO Biao, LIU Qi-yuan, CHEN Jiu-hui, et al. P-wave anisotropy of upper-mantle beneath China mainland and adjacent areas[J]. Chinese Journal of Geophysics, 2012, 55(12): 4106-4115 (in Chinese). [167] Wei W, Zhao D P, Xu J D. P-wave anisotropic tomography in Southeast Tibet: New insight into the lower crustal flow and seismotectonics[J]. Physics of the Earth and Planetary Interiors, 2013, 222: 47-57. [168] Wei W, Zhao D P, Xu J D, et al. Depth variations of P-wave azimuthal anisotropy beneath Mainland China[J]. Scientific Reports, 2016, 6(1): 29614. [169] 郑斯华, 高原. 中国大陆岩石层的方位各向异性[J]. 地震学报, 1994, 16(2): 131-140. ZHENG Si-hua, GAO Yuan. Azimuthal anisotropy in lithosphere on the Chinese mainland from observations of SKS at CDSN[J]. Acta Seismologica Sinica, 1994, 16(2): 131-140 (in Chinese). [170] 许卫卫, 郑天愉. 接收函数方法及研究进展[J]. 地球物理学进展, 2002, 17(4): 605-613. XU Wei-wei, ZHENG Tian-yu. The receiver function method and its progress[J]. Progress in Geophysics, 2002, 17(4): 605-613 (in Chinese). [171] 王琼, 高原, 钮凤林, 等. 利用接收函数计算地壳各向异性的可靠性分析及倾斜界面的影响[J]. 地震, 2016, 36(2): 14-25. WANG Qiong, GAO Yuan, NIU Feng-lin, et al, Reliability analysis of crustal anisotropy from receiver functions and effect of dipping interface[J]. Earthquake, 2016, 36(2): 14-25 (in Chinese). [172] Yao H J, van der Hilst R D, de Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744. [173] 易桂喜, 姚华建, 朱介寿, 等. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征[J]. 地球物理学报, 2010, 53(2): 256-268. YI Gui-xi, YAO Hua-jian, ZHU Jie-shou, et al. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy[J]. Chinese Journal of Geophysics, 2010, 53(2): 256-268 (in Chinese). [174] 黄忠贤, 李红谊, 胥颐. 南北地震带岩石圈S波速度结构面波层析成像[J]. 地球物理学报, 2013, 56(4): 1121-1131. HUANG Zhong-xian, LI Hong-yi, XU Yi. Lithospheric S-wave velocity structure of the North-South Seismic Belt of China from surface wave tomography[J]. Chinese Journal of Geophysics, 2013, 56(4): 1121-1131 (in Chinese). [175] 苏伟, 王椿镛, 黄忠贤. 青藏高原及邻区的Rayleigh面波的方位各向异性[J]. 中国科学(D辑), 2008, 38(6): 674-682. SU Wei, WANG Chun-yong, HUANG Zhong-xian. Azimuth Anisotropy of Rayleigh Surface Waves in Qinghai-Tibet Plateau and Adjacent Areas[J]. Science in China (Series D), 2008, 38(6): 674-682 (in Chinese). [176] Liu C M, Yao H J, Yang H Y, et al. Direct inversion for three-dimensional shear wave speed azimuthal anisotropy based on surface-wave ray tracing: Methodology and application to Yunnan, southwest China[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(11): 11394-11413. [177] Flesch L M, Holt W E, Silver P G, et al. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data[J]. Earth and Planetary Science Letters, 2005, 238(1-2): 248-268. [178] 沈胜意. 南北地震带北段与南段岩石圈各向异性分层特征初步分析[D]. 北京: 中国地震局地震预测研究所, 2020. SHEN Sheng-yi. Preliminary analysis of multi-layered lithospheric anisotropic characteristics in the north part and the south part within the north-south seismic zone[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2020. [179] 左佳卉, 钮凤林. 利用多层横波各向异性测量方法计算两层介质的分裂参数[J]. 地球物理学报, 2019, 62(8): 2885-2898. ZUO Jia-hui, NIU Feng-lin. Shear-wave splitting parameters of two-layer anisotropic media estimated from three different multilayer measurement methods[J]. Chinese Journal of Geophysics, 2019, 62(8): 2885-2898 (in Chinese). |
[1] | GAO Yuan, LI Xin-yi, LI Shu-yu, XIA Xin-yu, YANG Yi-wen, WANG Qiong. Deep and Shallow Deformation Tectonics of Jishishan MS6.2 Earthquake on 18 December 2023 in China [J]. EARTHQUAKE, 2024, 44(1): 160-166. |
[2] | WANG Shao-tong, LU Lai-yu. Study on the Mode-kissing of Surface Waves Based on the Theory of the Mode and Generalized Ray [J]. EARTHQUAKE, 2023, 43(4): 76-100. |
[3] | YANG Ye-xin, MENG Guo-jie, WU Wei-wei, LUO Yan, Thant Myo. Characteristics of Deep and Shallow Tectonics Deformation in Southwest Yunnan [J]. EARTHQUAKE, 2023, 43(1): 74-92. |
[4] | LIU Xi-kang, LI Yuan, DING Zhi-feng, CHANG Li-jun, WANG Yue-dong. A Study on Variation Characteristics of Shear-wave Splitting in the September 7, 2012 Yiliang Earthquake Region [J]. EARTHQUAKE, 2020, 40(1): 73-83. |
[5] | DU Guang-bao, LIU Jie, SUN Li. Differences of Rapid Report Magnitude for Moderate-Strong Shallow Earthquakes before and after the Implementation of the New National Standard [J]. EARTHQUAKE, 2019, 39(2): 19-27. |
[6] | ZHANG Li-na, LUO Yan, CHEN Zhi-yong, XIE Zhi-zhao, ZHOU Lan-jie, ZENG Xiang-fang. Surface Wave Group Velocity Tomography Imaging for Fujian Area from Ambient Noise [J]. EARTHQUAKE, 2018, 38(3): 134-143. |
[7] | ZHOU Lian-qing,Xiaodong Song,ZHAO Cui-ping. Temporal and Spatial Distribution and Images of Ambient Noise Strength in Mainland China [J]. EARTHQUAKE, 2017, 37(2): 1-16. |
[8] | XIE Hui, MA He-qing, MA Xiao-jun, LI Qing-mei, ZHANG Nan, REN Jia-qi. Rayleigh Wave Tomography of Ningxia and its AdjacentAreas based on Ambient Noise [J]. EARTHQUAKE, 2016, 36(2): 26-37. |
[9] | LIU Geng, GAO Yuan, SHI Yu-tao. Crustal Anisotropy in the Southeast of the Yunnan—Guizhou Plateau, China [J]. EARTHQUAKE, 2015, 35(3): 76-85. |
[10] | HAN Peng, LIU Qian-qian, SUN Zhen-tian, WEI Dong ping. A Discussion on Correlation of Plate Motions with Seismic Anisotropy and Stress Field in Global Subduction Zones [J]. EARTHQUAKE, 2014, 34(4): 1-11. |
[11] | LI Ling-li, WANG Wei-tao, ZHU Liang-bao, CHEN Hao-peng, WANG Qing-dong, MIAO Peng, WANG Jun. Processing Seismic A mbient Noise Data to obtain Reliable Surface Wave Dispersion Measurements [J]. EARTHQUAKE, 2014, 34(3): 108-116. |
[12] | LIU Li, GONG Meng, HU Bing, ZENG Zhi-fang, LUO Yan. Preliminary Study of Shear Wave Velocity Structure of Hebei and Surrounding Areas from Ambient Seismic Noise [J]. EARTHQUAKE, 2012, 32(4): 103-112. |
[13] | LI Jiao-jiao, HUANG Jin-li, LIU Zhi-kun. Lithosphere Velocity Structure of Northeast China from Ambient Noise and Surface Wave Tomography [J]. EARTHQUAKE, 2012, 32(4): 22-32. |
[14] | YANG Wen, LIU Jie, SHI Hai-xia, ZHOU Long-quan, SU You-jin. Study of Surface Wave Velocity Changes before Strong Earthquakes in Yunnan Region Using Ambient Noise Tomography [J]. EARTHQUAKE, 2011, 31(3): 103-111. |
[15] | CHEN Xiang-xiong, YANG Gui, FU Zai-yang, CHEN Wen-min. Determination of near-distance surface wave magnitude MS by usingregional digital seismic network [J]. EARTHQUAKE, 2002, 22(2): 53-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||