[1] Taylor M, Yin An. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009, 5(3): 199-214. [2] Wang D, Yin G M, Wang X L, et al. OSL dating of the late Quaternary slip rate on the Gyaring co fault in central Tibet[J]. Geochronometria, 2016, 43: 162-173. [3] 李康, 王躲, 邵庆丰, 等. 青藏高原中部NE向其香错断裂全新世左旋走滑速率及其构造意义[J]. 地震地质, 2018, 40(6): 1204-1215. LI Kang, WANG Duo, SHAO Qing-feng, et al. Holocene slip rate along the NE-trending Qixiang co fault in the central Tibetan plateau and its tectonic implications[J]. Seismology and Geology, 2018, 40(6): 1204-1215 (in Chinese). [4] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地震现场工作 第3部分:调查规范(GB/T 18208.3—2011)[S]. 北京: 中国标准出版社. 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Post-earthquake field works—Part 3: Code for field survey (GB/T 18208.3—2011)[S]. Beijing: China Standard Press, 2011 (in Chinese). [5] 国家市场监督管理总局, 中国国家标准化管理委员会. 中国地震烈度表(GB/T 17742—2020)[S]. 北京: 中国标准出版社, 2020. State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. The Chinese seismic intensity scale (GB/T 17742—2020)[S]. Beijing: China Standard Press, 2020 (in Chinese). [6] Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. |