[1] Hochegger G, Nava B, Radicella S, et al. A family of ionospheric models for different uses[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2000, 25(4): 307-310. [2] Klobuchar J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(3): 325-331. [3] 姜卫平, 邹璇, 唐卫明. 基于CORS网络的单频GPS实时精密单点定位新方法[J]. 地球物理学报, 2012, 55(5): 1549-1556. JIANG Wei-ping, ZOU Xuan, TANG Wei-ming. A new kind of real-time PPP method for GPS single-frequency receiver using CORS network[J]. Chinese Journal of Geophysics, 2012, 55(5): 1549-1556 (in Chinese). [4] 张瑞. 多模GNSS实时电离层精化建模及其应用研究[D]. 武汉: 武汉大学, 2013. ZHANG Rui. Theory and method on multimode GNSS real-time refinement ionospheric modeling and its application[D]. Wuhan: Wuhan University, 2013 (in Chinese). [5] Yuen P C, Roelofs T H. Seasonal variations in ionospheric total electron content[J]. Journal of Atmospheric and Terrestrial Physics, 1967, 29(3): 321-326. [6] 余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943-949. YU Tao, WAN Wei-xing, LIU Li-bo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics-Chinese Edition, 2006, 49(4): 943-949 (in Chinese). [7] Zhao B, Wan W, Liu L, et al. Features of annual and semiannual variations derived from the global ionospheric maps of total electron content[J]. Annales Geophysicae, 2007, 25(12): 2513-2527. [8] Bagiya M S, Joshi H P, Iyer K N, et al. TEC variations during low solar activity period (2005—2007) near the equatorial ionospheric anomaly crest region in India[J]. Annales Geophysicae, 2009, 27(3): 1047-1057. [9] 冯建迪, 王正涛, 赵珍珍. 卫星导航服务的全球电离层时变特性分析[J]. 测绘科学, 2015, 40(2): 13-17. FENG Jian-di, WANG Zheng-tao, ZHAO Zhen-zhen. Analysis of temporal variation of global ionosphere based on IGS[J]. Science of Surveying and Mapping, 2015, 40(2): 13-17 (in Chinese). [10] 冯建迪, 王正涛, 时爽爽, 等. 总电子含量赤道异常变化特性分析[J]. 测绘科学, 2016, 41(6): 44-47+52. FENG Jian-di, WANG Zheng-tao, SHI Shuang-shuang, et al. Using IGS to analyze the variation of anomaly equatorial ionization[J]. Science of Surveying and Mapping 2016, 41(6): 44-47+52 (in Chinese). [11] Liu J, Hernandez-Pajares M, Liang X, et al. Temporal and spatial variations of global ionospheric total electron content under various solar conditions[J]. Journal of Geodesy, 2017, 91: 485-502. [12] 李涌涛, 李建文, 魏绒绒, 等. 全球电离层TEC格网时空变化特性分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 776-783. LI Yong-tao, LI Jian-wen, WEI Rong-rong, et al. Analysis of temporal and spatial variation characteristics of global ionospheric TEC grid[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 776-783 (in Chinese). [13] 张学民, 申旭辉, 赵庶凡, 等. 地震电离层探测技术及其应用研究进展[J]. 地震学报, 2016, 38(3): 356-375. ZHANG Xue-min, SHEN Xu-hui, ZHAO Shu-fan, et al. The seismo-ionospheric monitoring technologies and their application research development[J]. Acta Seismologica Sinica, 2016, 38(3): 356-375 (in Chinese). [14] Shen X H, Zong Q G, Zhang X M. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results[J]. Earth and Planetary Physics, 2018, 2(6): 439-443. [15] 张学民, 申旭辉, 钱家栋, 等. 我国地震电磁卫星数据分析及应用研究进展[J]. 地震, 2009, 29(S1): 34-45. ZHANG Xue-min, SHEN Xu-hui, QIAN Jia-dong, et al. Advances in the analysis and application of seismo-electromagnetic satellite data in China[J]. Earthquake, 2009, 29(S1): 34-45 (in Chinese). [16] Liu C Y, Liu J Y, Chen Y I, et al. Statistical analyses on the ionospheric total electron content related to M≥6.0 earthquakes in China during 1998—2015[J]. Terrestrial Atmospheric and Oceanic Sciences, 2018, 29(5): 485-498. [17] Xu T, Hu Y L, Wu J, et al. Statistical analysis of seismo-ionospheric perturbation before 14 MS≥7.0 strong earthquakes in Chinese subcontinent[J]. Chinese Journal of Radio Science, 2012, 27(3): 507-512. [18] Feng J, Yuan Y, Zhang T, et al. Analysis of ionospheric anomalies before the Tonga volcanic eruption on 15 January 2022[J]. Remote Sensing, 2023, 15(19): 4879. [19] Xiong P, Long C, Zhou H, et al. Pre-earthquake ionospheric perturbation identification using CSES data via transfer learning[J]. Frontiers in Environmental Science, 2021, 9: 779225. [20] Xiong P, Long C, Zhou H, et al. Identification of electromagnetic pre-earthquake perturbations from the DEMETER data by machine learning[J]. Remote Sensing, 2020, 12(21): 3643. [21] Xiong P, Long C, Zhou H, et al. GNSS TEC-based earthquake ionospheric perturbation detection using a novel deep learning framework[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4248-4263. [22] Xiong P, Marchetti D, De Santis A, et al. SafeNet: SwArm for earthquake perturbations identification using deep learning networks[J]. Remote Sensing, 2021, 13(24): 5033. [23] Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(17): L17312. [24] Heki K, Enomoto Y. MW dependence of the preseismic ionospheric electron enhancements[J]. Journal of Geophysical Research: Space Physics, 2015, 120(8): 7006-7020. [25] Zhang X, Liu J, De Santis A, et al. Lithosphere-atmosphere-ionosphere coupling associated with four Yutian earthquakes in China from GPS TEC and electromagnetic observations onboard satellites[J]. Journal of Geodynamics, 2023, 155: 101943. [26] 毛田, 万卫星, 刘立波. 用经验正交函数构造武汉地区电子浓度总含量的经验模式[J]. 地球物理学报, 2005, 48(4): 751-758. MAO Tian, WAN Wei-xing, LIU Li-bo. An EOF-based empirical model of TEC over Wuhan[J]. Chinese Journal of Geophysics, 2005, 48(4): 751-758 (in Chinese). [27] Huang Z, Yuan H. Ionospheric single-station TEC short-term forecast using RBF neural network[J]. Radio Science, 2014, 49(4): 283-292. [28] Huang Z, Li Q B, Yuan H. Forecasting of ionospheric vertical TEC 1-h ahead using a genetic algorithm and neural network[J]. Advances in Space Research, 2015, 55(7): 1775-1783. [29] Feng J, Wang Z, Jiang W, et al. A single-station empirical model for TEC over the Antarctic Peninsula using GPS-TEC data[J]. Radio Science, 2017, 52(2): 196-214. [30] Orús R, Hernández-Pajares M, Juan J M, et al. Improvement of global ionospheric VTEC maps by using kriging interpolation technique[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(16): 1598-1609. [31] Jakowski N, Hoque M M, Mayer C. A new global TEC model for estimating transionospheric radio wave propagation errors[J]. Journal of Geodesy, 2011, 85: 965-974. [32] Mukhtarov P, Pancheva D, Andonov B, et al. Global TEC maps based on GNNS data: 2. Model evaluation[J]. Journal of Geophysical Research: Space Physics, 2013, 118(7): 4609-4617. [33] Wan W X, Ding F, Ren Z P, et al. Modeling the global ionospheric total electron content with empirical orthogonal function analysis[J]. Science China Technological Sciences, 2012, 55: 1161-1168. [34] Wang C, Xue K, Wang Z, et al. Global ionospheric maps forecasting based on an adaptive autoregressive modeling of grid point VTEC values[J]. Astrophysics and Space Science, 2020, 365: 1-12. [35] Cherrier N, Castaings T, Boulch A. Deep sequence-to-sequence neural networks for ionospheric activity map prediction[C]. Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14—18, 2017, Proceedings, Part V 24. Springer International Publishing, 2017: 545-555. [36] Feng J, Zhang T, Li W, et al. A new global TEC empirical model based on fusing multi-source data[J]. GPS Solutions, 2023, 27(1): 20. [37] Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Science, 1998, 33(3): 565-582. [38] Li Z, Yuan Y, Li H, et al. Two-step method for the determination of the differential code biases of COMPASS satellites[J]. Journal of Geodesy, 2012, 86: 1059-1076. [39] Yuan Y, Li Z, Wang N, et al. Monitoring the ionosphere based on the crustal movement observation network of China[J]. Geodesy and Geodynamics, 2015, 6(2): 73-80. [40] Hernández-Pajares M, Juan J M, Sanz J, et al. The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques[J]. Journal of Geodesy, 2011, 85(12): 887-907. [41] Hernández-Pajares M, García-Rigo A, Juan J M, et al. GNSS measurement of EUV photons flux rate during strong and mid solar flares[J]. Space Weather, 2012, 10(12): S12001. [42] Afraimovich E L, Altyntsev A T, Kosogorov E A, et al. Ionospheric effects of the solar flares of September 23, 1998 and July 29, 1999 as deduced from global GPS network data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(17): 1841-1849. [43] Xiong B, Wan W, Ning B, et al. A statistic study of ionospheric solar flare activity indicator[J]. Space Weather, 2014, 12(1): 29-40. [44] Xiong B, Wan W, Yu Y, et al. Investigation of ionospheric TEC over China based on GNSS data[J]. Advances in Space Research, 2016, 58(6): 867-877. [45] Milan S E, Clausen L B N, Coxon J C, et al. Overview of solar wind-magnetosphere-ionosphere-atmosphere coupling and the generation of magnetospheric currents[J]. Space Science Reviews, 2017, 206(1-4): 547-573. [46] Gonzalez W D, Joselyn J A, Kamide Y, et al. What is a geomagnetic storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792. [47] Lin C H, Liu J Y, Cheng C Z, et al. Three-dimensional ionospheric electron density structure of the weddell sea anomaly[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A2): A02312. [48] Zhao L X, Zhang Q H, Xu T, et al. A statistical study of nighttime ionospheric NmF2 enhancement at middle-to-high latitudes in the northern hemisphere[J]. Journal of Geophysical Research: Space Physics, 2022, 127(11): e2022JA030844. |