[1] 刘杰, 张国民. “是否存在有助于预报的地震前兆”的讨论[J]. 科学通报, 2016, 61(18): 1988-1994. LIU Jie, ZHANG Guo-min. Discussion on “Are there earthquake precursors that can lead to useful predictions?”[J]. Chinese Science Bulletin, 2016, 61(18): 1988-1994 (in Chinese). [2] 杜建国, 李营, 崔月菊, 等. 地震流体地球化学[M]. 北京: 地震出版社, 2018. DU Jian-guo, LI Ying, CUI Yue-ju, et al. Seismic fluid geochemistry[M]. Beijing: Seismological Press, 2018 (in Chinese). [3] 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67(13): 1404-1420. LI Ying, CHEN Zhi, HU Le, et al. Advances in seismic fluid geochemistry and its application in earthquake forecasting[J]. Chinese Science Bulletin, 2022, 67(13): 1404-1420 (in Chinese). [4] Kelam A A, Karimzadeh S, Yousefibavil K, et al. An evaluation of seismic hazard and potential damage in Gaziantep, Turkey using site specific models for sources, velocity structure and building stock[J]. Soil Dynamics and Earthquake Engineering, 2022, 154: 107129. [5] McCaffrey R. The tectonic framework of the Sumatran subduction zone[J]. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 345-366. [6] Cui Y J, Zheng C, Jiang L, et al. Variations of multiple gaseous emissions associated with the great Sumatra earthquakes in 2004 and 2005[J]. Chemical Geology, 2023, 618: 121311. [7] Erdik M, Tümsa M B D, Pınar A, et al. A preliminary report on the February 6, 2023 earthquakes in Türkiye[EB/OL]. (2023-02-24)[2023-09-26]. http://doi.org/10.32858/temblor.297. [8] Ren C, Wang Z, Taymaz T, et al. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş, Türkiye, earthquake doublet[J]. Science, 2024, 383(6680): 305-311. [9] Meng J, Kusky T, Mooney W D, et al. Surface deformations of the 6 February 2023 earthquake sequence, eastern Türkiye[J]. Science, 2024, 383(6680): 298-305. [10] 徐锡伟, 闻学泽, 叶建青, 等. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008, 30(3): 597-629. XU Xi-wei, WEN Xue-ze, YE Jian-qing, et al. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 2008, 30(3): 597-629 (in Chinese). [11] Guo J, Zheng J, Guan B, et al. Coseismic surface rupture structures associated with 2010 MS7.1 Yushu earthquake, China[J]. Seismological Research Letters, 2012, 83(1): 109-118. [12] 杜建国, 仵柯田, 孙凤霞. 地震成因综述[J]. 地学前缘, 2018, 25(4): 255-267. DU Jian-guo, WU Ke-tian, SUN Feng-xia. Earthquake generation: A review[J]. Earth Science Frontiers, 2018, 25(4): 255-267 (in Chinese). [13] Teisseyre R, Majewski E. Chapter 9 Thermodynamics of line defects and earthquake thermodynamics[A]//Teisseyre R, Majewski E. Earthquake thermodynamics and phase transformations in the Earth’s interior[M]. San Diego: Academic Press, 2001. [14] 李德威. 地震与地热的关联性: 从预测减灾到取能减灾[J]. 地球科学与环境学报, 2017, 39(4): 563-574. LI De-wei. Relevance of seismicity and geothermics: A new thought to alleviate disasters from earthquake prediction to taking energy[J]. Journal of Earth Sciences and Environment, 2017, 39(4): 563-574 (in Chinese). [15] 岳中琦. 汶川地震与山崩地裂的极高压甲烷天然气成因和机理[J]. 地学前缘, 2013, 20(6): 15-20. YUE Zhong-qi. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures[J]. Earth Science Frontiers, 2013, 20(6): 15-20 (in Chinese). [16] Zhan Z. Mechanisms and implications of deep earthquakes[J]. Annual Review of Earth and Planetary Sciences, 2020, 48: 147-174. [17] Hacker B R, Peacock S M, Abers G A, et al. Subduction factory: 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2030. [18] Miller S A, Collettini C, Chiaraluce L, et al. Aftershocks driven by a high pressure CO2 source at depth[J]. Nature, 2004, 427(6976): 724-727. [19] Reyners M, Eberhart-Phillips D, Stuart G. The role of fluids in lower-crustal earthquakes near continental rifts[J]. Nature, 2007, 446(7139): 1075-1078. [20] 李德威. 大陆板内地震的发震机理与地震预报以汶川地震为例[J]. 地质科技情报, 2008, 27(5): 1-6. LI De-wei. Mechanism and prediction of the intraplate earthquakes: An example from Wenchuan earthquake in Sichuan Province[J]. Geological Science and Technology Information, 2008, 27(5): 1-6 (in Chinese). [21] 李德威. 东昆仑、 玉树、 汶川地震的发生规律和形成机理: 兼论大陆地震成因与预测[J]. 地学前缘, 2010, 17(5): 179-192. LI De-wei. The regularity and mechanism of East Kunlun, Wenchuan, and Yushu earthquakes and discussion on genesis and prediction of continental earthquakes[J]. Earth Science Frontiers, 2010, 17(5): 179-192 (in Chinese). [22] Gilat A L, Vol A. Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes[J]. Geoscience Frontiers, 2012, 3(6): 911-921. [23] Waldhauser F, Schaff D P, Diehl T, et al. Splay faults imaged by fluid-driven aftershocks of the 2004 MW9.2 Sumatra-Andaman earthquake[J]. Geology, 2012, 40(3): 243-246. [24] Miller S A. The role of fluids in tectonic and earthquake processes[J]. Advances in Geophysics, 2013, 54: 1-46. [25] Du J G, Sun F X, Cui Y J, et al. Earthquakes generated by fluid overpressure: Insights from cryptoexplosive breccias[J]. Journal of Asian Earth Sciences: X, 2021, 6: 100069. [26] 杨帆, 孙凤霞, 刘轶男, 等. 地幔流体及其在地震孕育中的作用[J]. 中国地震, 2022, 38(3): 432-445. YANG Fan, SUN Feng-xia, LIU Yi-nan, et al. Mantle fluids and their role in earthquake generation[J]. Earthquake Research in China, 2022, 38(3): 432-445 (in Chinese). [27] 杜建国, 仵柯田, 孙凤霞, 等. 隐爆角砾岩古地震的一种成因标志[J]. 岩石学报, 2022, 38(3): 913-922. DU Jian-guo, WU Ke-tian, SUN Feng-xia, et al. Cryptoexplosive breccia: A genetic mark of the paleoearthquakes[J]. Acta Petrologica Sinica, 2022, 38(3): 913-922 (in Chinese). [28] McKenzie D. Active tectonics of the Alpine-Himalayan belt, the Aegean Sea and surrounding regions[J]. Geophysical Journal International, 1978, 55(1): 217-254. [29] Bozkurt E. Neotectonics of Turkey-A synthesis[J]. Geodinamica Acta, 2001, 14(1-3): 3-30. [30] Westaway R, Demir T, Seyrek A. Geometry of the Turkey-Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: the role of the Malatya-Ovacık Fault Zone in eastern Turkey[J]. eEarth Discussions, 2007, 2(4): 169-190. [31] Ozer C, Ozyazicioglu M, Gok E, et al. Imaging the crustal structure throughout the East Anatolian Fault Zone, Turkey, by local earthquake tomography[J]. Pure and Applied Geophysics, 2019, 176(6): 2235-2261. [32] Arger J, Mitchell L, Westaway R B C. Neogene and Quaternary volcanism of southeastern Turkey[J]. Geological Society Special Publication, 2000, 173: 459-487. [33] Yilmaz H, Özel S. Crustal structure of the eastern part of central Anatolia (Turkey)[J]. Turkish Journal of Earth Sciences, 2008, 18(1): 169-185. [34] Yıldız S S, Özkan A, Yavaşoğlu H H, et al. Determination of recent tectonic deformations in the vicinity of Adana-Osmaniye-Hatay-Gaziantep triple junction region by half-space modeling[J]. Comptes Rendus Géoscience, 2020, 352(3): 225-234. [35] Reilinger R E, McClusky S C, Oral M B, et al. Global positioning system measurements of present-day crustal movement in the Arabian-Africa-Eurasia plate collision zone[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 9983-9999. [36] Over S, Akin U, Sen R. Geophysical data (gravity and magnetic) from the area between Adana, Kahramanmaras and Hatay in the Eastern Mediterranean region: Tectonic Implications[J]. Pure and Applied Geophysics, 2018, 175(6): 2205-2219. [37] Yilmaz H, Özel S. Crustal structure of the eastern part of central Anatolia (Turkey)[J]. Turkish Journal of Earth Sciences, 2008, 17(1): 169-185. [38] Kuznetsov P Y, Koulakov I Y. The three-dimensional structure beneath the Popocatépetl volcano (Mexico) based on local earthquake seismic tomography[J]. Journal of Volcanology and Geothermal Research, 2014, 276: 10-21. [39] Gök R, Pasyanos M E, Zor E. Lithospheric structure of the continent-continent collision zone: Eastern Turkey[J]. Geophysical Journal International, 2007, 169(3): 1079-1088. [40] Gökalp H. Tomographic imaging of the seismic structure beneath the East Anatolian Plateau, Eastern Turkey[J]. Pure and Applied Geophysics, 2012, 169(10): 1749-1776. [41] Türkoğlu E, Unsworth M, Bulut F, et al. Crustal structure of the North Anatolian and East Anatolian fault systems from magnetotelluric data[J]. Physics of the Earth and Planetary Interiors, 2015, 241: 1-14. [42] 杜建国, 康春丽. 强地震前兆异常特征与深部流体作用探讨[J]. 地震, 2000, 20(3): 95-101. DU Jian-guo, KANG Chun-li. Characteristics of earthquake precursors and its geological significance[J]. Earthquake, 2000, 20(3): 95-101 (in Chinese). [43] 刘巍, 杜建国, 白利平. 浅谈超临界流体在地震孕育过程中的作用[J]. 地震地质, 2000, 22(4): 439-444. LIU Wei, DU Jian-guo, BAI Li-ping. A review on the role of supercritical fluids in the earthquake generation[J]. Seismology and Geology, 2000, 22(4): 439-444 (in Chinese). [44] 刘巍, 杜建国, 丁建才. 地球内部矿物相变及其地质意义[J]. 现代地质, 2001, 15(2): 211-215. LIU Wei, DU Jian-guo, DING Jian-cai. Phase transition of the earth interior mineral and its geological importance[J]. Geoscience, 2001, 15(2): 211-215 (in Chinese). [45] 王传远, 杜建国, 刘巍, 等. 超临界流体的地质意义[J]. 西北地质, 2005, 38(2): 49-53. WANG Chuan-yuan, DU Jian-guo, LIU Wei, et al. Geological applications of supercritical fluids[J]. Northwestern Geology, 2005, 38(2): 49-53 (in Chinese). [46] 刘雷, 杜建国, 易丽. 亚稳态橄榄石相变与深源地震研究进展[J]. 地震, 2007, 27(3): 41-49. LIU Lei, DU Jian-guo, YI Li. An advance in metastable olivine phase transformation and deep-focus seismicity[J]. Earthquake, 2007, 27(3): 41-49 (in Chinese). [47] Corvò S. Multidisciplinary investigations on the relationships between deformation and metamorphism across crustal rheological boundaries[J]. Italy: Università di Pavia, 2022. [48] Du J G, Si X Y, Chen Y X, et al. Geochemical anomalies connected with great earthquakes in China[A]//Stefansson O. Geochemistry research advances[M]. New York: Nova Science Publishers, 2008. [49] 杜建国, 李营, 王传远, 等. 高压地球科学[M]. 北京: 地震出版社, 2010. DU Jian-guo, LI Ying, WANG Chuan-yuan, et al. High pressure geoscience[M]. Beijing: Seismological Press, 2010 (in Chinese). [50] Reid H F. The mechanics of the earthquake[C]//Report of the state investigation commission[R]. Carnegie: Institution of Washington, 1910, 2: 16-28. [51] Green H W, Houston H. The mechanics of deep earthquakes[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 169-213. [52] Julian B R, Miller A, Foulger G R. Non-double-couple earthquakes 1. Theory[J]. Review of Geophysics, 1998, 36 (4): 525-549. [53] 李仕宏. 地震成因地球自转变速、 变形振荡[J]. 大地测量与地球动力学, 2009, 29(S1): 163-173. LI Shi-hong. Seismogenesis—Varying velocity and deformation oscillation of the earth rotation[J]. Journal of Geodesy and Geodynamics, 2009, 29(S1): 163-173 (in Chinese). [54] Maden N, Öztürk S. Seismic b-values, Bouguer gravity and heat flow data beneath eastern Anatolia, Turkey: Tectonic implications[J]. Surveys in Geophysics, 2015, 36(4): 549-570. [55] 朱凤鸣, 吴戈. 一九七五年海城地震[M]. 北京: 地震出版社, 1982. ZHU Feng-ming, WU Ge. The 1975 Haicheng earthquake[M]. Beijing: Seismological Press, 1982 (in Chinese). [56] 祝意青, 梁伟锋, 赵云峰, 等. 2017年四川九寨沟MS7.0地震前区域重力场变化[J]. 地球物理学报, 2017, 60(10): 4124-4131. ZHU Yi-qing, LIANG Wei-feng, ZHAO Yun-feng, et al. Gravity changes before the Jiuzhaigou, Sichuan, MS7.0 earthquake of 2017[J]. Chinese Journal of Geophysics, 2017, 60(10): 4124-4131 (in Chinese). [57] Baba A, Şaroğlu F, Akkuş I, et al. Geological and hydrogeochemical properties of geothermal systems in the southeastern region of Turkey[J]. Geothermics, 2019, 78: 255-271. [58] 李正心. 重力场变化与地震[M]. 北京: 科学出版社, 2020. LI Zheng-xin. Gravity field variation and earthquake[M]. Beijing: Science Press, 2020 (in Chinese). [59] Cui Y J, Sun F X, Liu L, et al. Contribution of deep-earth fluids to the geothermal system: A case study in the Arxan volcanic region, northeastern China[J]. Frontiers Earth Science, 2023, 10: 996583. [60] Li Y, Chen Z, Sun A, et al. Geochemical features and seismic imaging of the tectonic zone between the Tibetan Plateau and Ordos Block, central northern China[J]. Chemical Geology, 2023, 622: 121386. [61] 崔月菊, 杜建国, 刘雷, 等. 汶川MS8.0地震前后龙门山断裂带CO和CH4排气增强[J]. 地震研究, 2016, 39(2): 239-245. CUI Yue-ju, DU Jian-guo, LIU Lei, et al. Increasing of CO and CH4 gas emission at the Longmenshan fault zone before and after the Wenchuan MS8.0 earthquake[J]. Journal Seismological Research, 2016, 39(2): 239-245 (in Chinese). [62] 崔月菊, 杜建国, 李新艳, 等. 汶川地震相关的断裂带含碳气体排放量估算[J]. 矿物岩石地球化学通报, 2017, 36(2): 222-227. CUI Yue-ju, DU Jian-guo, LI Xin-yan, et al. Estimate of C-bearing gas emission from the fault associated with the Wenchuan earthquake[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(2): 222-227 (in Chinese). [63] 崔月菊, 杜建国, 周晓成, 等. 墨西哥下加利福尼亚MW7.2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报, 2011, 30(4): 458-464. CUI Yue-ju, DU Jian-guo, ZHOU Xiao-cheng, et al. Geochemical anomaly of CO remote sensing associated with Baja California MW7.2 earthquake in Mexico[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(4): 458-464 (in Chinese). [64] Cui Y J, Du J G, Zhang D, et al. Anomalies of total column CO and O3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2513-2519. [65] 刘国华, 许令兵, 田磊, 等. 河南祁雨沟隐爆角砾岩筒的侧向隐爆模式探讨[J]. 矿产勘查, 2012, 3(1): 16-22. LIU Guo-hua, XU Ling-bing, TIAN Lei, et al. Discussion on the model of lateral crypto-explosion in the breccia pipes in Qiyugou, Henan[J]. Mineral Exploration, 2012, 3(1): 16-22 (in Chinese). [66] Zhang J, Li S, Santosh M, et al. The genesis and gold mineralization of the crypto-explosive breccia pipe in the Yixingzhai gold region, central North China Craton[J]. Geological Journal, 2020, 55(8): 5664-5680. |