[1] Yang Y, Li Y, Guan Z J, et al. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China[J]. Applied Geochemistry, 2018, 89: 23-33. [2] Putnis A, Austrheim H. Fluid-induced processes: Metasomatism and metamorphism[J]. Geofluids, 2020, 10(1-2): 254-269. [3] Utkin V I, Yurkox A K. Radon as a tracer of tectonic movements[J]. Russian Geology and Geophysics, 2010, 51(2): 220-227. [4] 李营, 方震, 张晨蕾, 等. 地震流体地球化学短临预测研究进展与展望[J]. 地震地质, 2023, 45(3): 593-621. LI Ying, FANG Zhen, ZHANG Chen-lei, et al. Research progress and prospect of seismic fluid geochemistry in short-imminent earthquake prediction[J]. Seismology and Geology, 2023, 45(3): 593-621 (in Chinese). [5] Fu C C, Yang T F, Chen C H, et al. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. Journal of Asian Earth Sciences, 2017, 149: 64-77. [6] 李营, 陈志, 胡乐, 等. 流体地球化学进展及其在地震预测研究中的应用[J]. 科学通报, 2022, 67(13): 1404-1420. LI Ying, CHEN Zhi, HU Le, et al. Advances in seismic fluid geochemistry and its application in earthquake forecasting[J]. Chinese Science Bulletin, 2022, 67(13): 1404-1420 (in Chinese). [7] Skelton A, Andrén M, Kristmannsdóttir H, et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland[J]. Nature Geoscience, 2014, 7(10): 752-756. [8] 杜建国, 仵柯田, 孙凤霞. 地震成因综述[J]. 地学前缘, 2018, 25(4): 255-267. DU Jian-guo, WU Ke-tian, SUN Feng-xia. Earthquake generation: A review[J]. Earth Science Frontiers, 2018, 25(4): 255-267 (in Chinese). [9] Liu W, Guan L F, Liu Y, et al. Fluid geochemistry and geothermal anomaly along the Yushu-Ganzi-Xianshuihe fault system, eastern Tibetan Plateau: Implications for regional seismic activity[J]. Journal of Hydrology, 2022, 607: 127554. [10] Zhou X C, Liu L, Chen Z, et al. Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau[J]. Applied Geochemistry, 2017, 79: 17-26. [11] Diamond L W, Wanner C, Waber H N. Penetration depth of meteoric water in orogenic geothermal systems[J]. Geology, 2018, 46(12): 1063-1066. [12] 汪伶俐. 天津市宝坻区地下水资源评价[D]. 北京: 中国地质大学(北京), 2014. WANG Ling-li. Evaluation of underground water resources in Baodi of Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2014 (in Chinese). [13] 刘学领. 地热异常区不同含水层水化学组分差异[J]. 地震地磁观测与研究, 2013, 34(Z3): 188-192. LIU Xue-ling. Analysis on difference of water chemical compositions of different aquifer in geothermal anomaly area[J]. Seismological and Geomagnetic Observation and Research, 2013, 34(Z3): 188-192 (in Chinese). [14] 王熠熙, 邵永新, 李悦, 等. 基于多种方法的宝坻新井水位异常分析[J]. 地震, 2020, 40(1): 172-183. WANG Yi-xi, SHAO Yong-xin, LI Yue, et al. A study on Baodi well water level anomalies using multiple methods[J]. Earthquake, 2020, 40(1): 172-183 (in Chinese). [15] Li J X, Wu Z H, Tian G H, et al. Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in north China[J]. Applied Geochemistry, 2022, 138: 105211. [16] 刘杰. 天津地区地热流体地球化学特征[D]. 北京: 中国地质大学(北京), 2014. LIU Jie. The geochemical character of geothermal liquid in Tianjin area[D]. Beijing: China University of Geosciences (Beijing), 2014 (in Chinese). [17] 杨永江, 庞海, 靳宝珍, 等. 天津周良庄地质构造背景和地热成因探讨[J]. 世界地质, 2010, 29(4): 646-657. YANG Yong-jiang, PANG Hai, JIN Bao-zhen, et al. Discussion on the geological tectonic setting and geothermal origin in Zhouliangzhuang area of Tianjin[J]. World Geology, 2010, 29(4): 646-657 (in Chinese). [18] 申华梁, 杨耀, 周志华, 等. 川西理塘毛垭温泉群的成因及深部地热过程[J]. 地震地质, 2023, 45(3): 689-709. SHEN Hua-liang, YANG Yao, ZHOU Zhi-hua, et al. Genesis and deep geothermal processes of the Maoya hot spring complex in Litang, western Sichuan[J]. Seismology and Geology, 2023, 45(3): 689-709 (in Chinese). [19] 李中平, 陶明信, 李立武, 等. 气相色谱-稳定同位素质谱法测定溶解无机碳碳同位素[J]. 分析化学, 2007, 35(10): 1455-1458. LI Zhong-ping, TAO Ming-xin, LI Li-wu, et al. Determination of isotope composition of dissolved inorganic carbon by gas-chromatography-conventional isotope-ratio mass spectrometry[J]. Analytical Chemistry, 2007, 35(10): 1455-1458 (in Chinese). [20] 刘汉彬, 金贵善, 李军杰, 等. 铀矿地质样品的稳定同位素组成测试方法[J]. 世界核地质科学, 2013, 30(3): 174-179. LIU Han-bin, JIN Gui-shan, LI Jun-jie, et al. Determination of stable isotope composition in uranium geological samples[J]. World Nuclear Geoscience, 2013, 30(3): 174-179 (in Chinese). [21] Piper A. A graphic procedure in the geochemical interpretation of water-analyses[J]. Eos Transactions American Geophysical Union, 1944, 25: 914-928. [22] Tian J, Pan Z, Guo Q, et al. Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax[J]. Geothermics, 2018, 74: 92-105. [23] 崔月菊, 孙凤霞, 杜建国. 中国大陆东部温泉流体来源解析与地震地球化学异常判识方法[J]. 地震研究, 2022, 45(2): 199-216. CUI Yue-ju, SUN Feng-xia, DU Jian-guo. Methods for identification of seismic geochemical precursors and source partitioning of hot spring fluids in Eastern Chinese Mainland[J]. Journal of Seismological Research, 2022, 45(2): 199-216 (in Chinese). [24] 柴蕊. 天津市周良庄地热田地下热水的水化学及钙华研究[D]. 北京: 中国地质大学(北京), 2006. CHAI Rui. A study of hydrochemistry and tufa in thermal groundwater in the Zhouliangzhuang geothermal fileld, Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2006 (in Chinese). [25] 石太衡, 吴耿, 李荣. 硅质热泉沉积物的结构和微生物成矿成岩机制[J]. 沉积学报, 2020, 38(1): 113-123. SHI Tai-heng, WU Geng, LI Rong. Structures of siliceous hot spring deposits and mechanism of microbial mineralization and diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(1): 113-123 (in Chinese). [26]Giggenbach W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52: 2749-2765. [27] 庞忠和, 杨峰田, 罗璐. 地热田储层温度的研究方法[M]//丁仲礼. 固体地球科学研究方法. 北京: 科学出版社, 2013: 219-242. PANG Zhong-he. YANG Feng-tian, LUO Lu. Research methods of reservoir temperature in geothermal fields[M]//DING Zhong-li. Research methods in solid earth science. Beijing: Science Press, 2013: 219-242 (in Chinese). [28] Fournier R O. Application of water geochemistry to geothermal exploration and reservoir engineering[J]. Geothermal Systems, Principles and Case Histories, 1981: 109-143. [29] Fournier, R O. Water geothermometers applied to geothermal energy[M]//D’Amore F. Applications of geochemistry in geothermal reservoir development: Rome, Italy. Geneva: United Nations Institute for Training and Research/United Nations Development Program (UNITAR/UNDP), 1991: 37-69. [30] Giggenbach W F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin[J]. Earth and Planetary Science Letters, 1992: 495-510. [31] Kharaka Y K, Mariner R H. Chemical geothermometers and their application to formation waters from sedimentary basins[M]//Naeser N D, McCulloh T H. Thermal History of Sedimentary Basins. New York: Springer-Verlag, 1989: 99-117. [32] Fournier R O, Potter R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochim et Cosmochim Acta, 1979: 43(9): 1543-1550. [33] 路畅, 周晓成, 李营, 等. 玛多MS7.4地震地表破裂带与东昆仑断裂温泉的水文地球化学特征[J]. 地震地质, 2021, 43(5): 1101-1126. LU Chang, ZHOU Xiao-cheng, LI Ying, et al. Hydrogeochemical characteristics of groundwater in the surface rupture zone of madoi MS7.4 earthquake and hot springs in the east Kunlun fault[J]. Seismology and Geology, 2021, 43(5): 1101-1126 (in Chinese). [34] Fournier R O, Truesdell A H. An empirical Na-K-Ca geothermometerfor natural waters[J]. Geochimica et Cosmochimica Acta, 1973, 37: 1255-1275. [35] 于湲. 北京城区地热田地下热水的水化学及同位素研究[D]. 北京: 中国地质大学(北京), 2006. YU Yuan. A study of hydrochemistry and isotopes in thermal groundwater in the urban geothermal field, Beijing[D]. Beijing: China University of Geosciences (Beijing), 2006 (in Chinese). [36] Brook C A, Marina R H, Mabey D R, et al. Hydrothermal convection systems with reservoir temperature >90℃[M]//Muffler L J P. Assessment of geothermal resources of the United States-1978. United States: Geological Survey Circular, 1979: 18-85. [37] 王云. 滇东南地热流体地球化学特征研究[D]. 北京: 中国地震局地球物理研究所, 2021. WANG Yun. A research on geochemical characteristics of geothermal fluids in southeast Yunnan Province, China[D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2021 (in Chinese). [38] 路畅, 李营, 陈志, 等.华北断陷盆地中北部地热水地球化学特征及成因初探[J]. 矿物岩石地球化学通报, 2018, 37(4): 663-673. LU Chang, LI Ying, CHEN Zhi, et al. A primary study on geochemical characteristics and genesis of geothermal water in the north-central part of the north China downfaulted basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 663-673 (in Chinese). [39] Liu J R, Song X F, Yuan G F, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Science Bulletin, 2010, 55(2): 200-211 [40] 张百鸣, 王心义, 林建旺. 天津地热田地热水的同位素特征分析[J]. 西部探矿工程, 2006, 18(3): 85-88. ZHANG Bai-ming, WANG Xin-yi, LIN Jian-wang. Isotopic characterization of geothermal hot water in Tianjin geothermal field[J]. West-China Exploration Engineering, 2006, 18(3): 85-88 (in Chinese). [41] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3-4): 137-150. [42] Zhou X, Wang W, Chen Z, et al. Hot spring gas geochemistry in western Sichuan Province, China after the Wenchuan MS8.0 earthquake[J]. TAO: Terrastrial, Atmospheric, and Oceanic Sciences, 2015, 26(4): 361-373. [43] Craig H. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta, 1953, 3(2-3): 53-92. [44] Pineau F, Javoy M. Carbon isotopes and concentrations in mid-oceanic ridge basalts[J]. Earth and Planetary Science Letters, 1983, 62(2): 239-257. [45] Marty B, O’Nions R K, Oxburgh E R, et al. Helium isotopes in Alpine regions[J]. Tectonophysics, 1992, 206(1-2): 71-78. [46] Sano Y, Marty B. Origin of carbon in fumarolic gas from island arcs[J]. Chemical Geology, 1995, 119(1-4): 265-274. [47] Tian J, Stefánsson A, Li Y M, et al. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, Southeast China[J]. Geothermics, 2023, 109: 1-12. |