EARTHQUAKE ›› 2021, Vol. 41 ›› Issue (3): 1-21.doi: 10.12196/j.issn.1000-3274.2021.03.001
ZHOU Lian-qing1, ZHAO Cui-ping1, ZHANG Jie2, CHE Shi3
Received:
2020-08-27
Revised:
2020-11-05
Online:
2021-07-31
Published:
2021-11-02
CLC Number:
ZHOU Lian-qing, ZHAO Cui-ping, ZHANG Jie, CHE Shi. Application and Prospect of Artificial Intelligence Real-time Seismic Monitoring and Analysis System at the China Seismic Experimental Site[J]. EARTHQUAKE, 2021, 41(3): 1-21.
[1] Kong Q, Trugman D T, Ross Z E, et al. Machine learning in seismology: Turning data into insights[J]. Seismological Research Letters, 2019, 90(1): 3-14. [2] Zhu W, Beroza G C. PhaseNet: A deep-neural-network-based seismic arrival time picking method[J]. Geophysical Journal International, 2018, 216(1): 261-273. [3] Ross Z E, Meier M-A, Hauksson E. P-Wave Arrival picking and first-motion polarity determination with deep learning[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 5120-5129. [4] Perol T, Gharbi M, Denolle M. Convolutional neural network for earthquake detection and location[J]. Science Advances, 2018, 4(2): e1700578. [5] Yoon C E, O’Reilly O, Bergen K J, et al. Earthquake detection through computationally efficient similarity search[J]. Science Advances, 2015, 1(11): e1501057. [6] 于子叶, 储日升, 盛敏汉. 深度神经网络拾取地震P和S波到时[J]. 地球物理学报, 2018, 61(12): 4873-4886. YU Zi-ye, CHU Ri-sheng, SHENG Min-han. Pick onset time of P and S phase by deep neural network[J]. Chinese Journal of Geophysics, 2018, 61(12): 4873-4886 (in Chinese). [7] Wang J, Xiao Z W, Liu C, et al. Deep learning for picking seismic arrival times[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 6612-6624. [8] Zhu L J, Peng Z G, McClellan J, et al. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 M7.9 Wenchuan earthquake[J]. Physics of the Earth and Planetary Interiors, 2019, 293: 106261. [9] 蒋一然, 宁杰远. 基于支持向量机的地震体波震相自动识别及到时自动拾取[J]. 地球物理学报, 2019, 62(1): 361-373. JIANG Yi-ran, NING Jie-yuan. Automatic detection of seismic body-wave phases and determination of their arrival times based on support vector machine[J]. Chinese Journal of Geophysics, 2019, 62(1): 361-373 (in Chinese). [10] 赵明, 陈石, 房立华, 等. 基于U形卷积神经网络的震相识别与到时拾取方法研究[J]. 地球物理学报, 2019, 62(8): 3034-3042. ZHAO Ming, CHEN Shi, FANG Li-hua. Earthquake phase arrival auto picking based on U-shaped convolutional neural network[J]. Chinese Journal of Geophysics, 2019, 62(8): 3034-3042 (in Chinese). [11] Zhang X, Zhang J, Yuan C C, et al. Locating induced earthquakes with a network of seismic stations in Oklahoma via a deep learning method[J]. Scientific Reports, 2020, 10(1): 1941. [12] Tang L L, Zhang M, Wen L X. Support vector machine classification of seismic events in the Tianshan Orogenic Belt[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1): e2019JB018132. [13] 赵明, 陈石, Dave Yuen. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报, 2019, 62(1): 374-382. ZHAO Ming, CHEN Shi, Dave Yuen. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics, 2019, 62(1): 374-382 (in Chinese). [14] Hu J, Qiu H R, Zhang H J, et al. Using deep learning to derive shear-wave velocity models from surface-wave dispersion data[J]. Seismological Research Letters, 2020, 91(3): 1738-1751. [15] Bianco M J, Gerstoft P, Olsen K B, et al. High-resolution seismic tomography of Long Beach, CA using machine learning[J]. Scientific Reports, 2019, 9(1): 14987. [16] Zhang J, Zhang H J, Chen E H, et al. Real-time earthquake monitoring using a search engine method[J]. Nature Communications, 2014, 5(1): 5664. [17] Li Z F, Meier M-A, Hauksson E, et al. Machine learning seismic wave discrimination: Application to earthquake early warning[J]. Geophysical Research Letters, 2018, 45(10): 4773-4779. [18] Kong Q, Allen R M, Schreier L, et al. MyShake: A smartphone seismic network for earthquake early warning and beyond[J]. Science Advances, 2016, 2(2): e1501055. [19] Kong Q, Allen R M, Schreier L. MyShake: Initial observations from a global smartphone seismic network[J]. Geophysical Research Letters, 2016, 43(18): 9588-9594. [20] Khoshnevis N, Taborda R. Prioritizing ground-motion validation metrics using semisupervised and supervised learning[J]. Bulletin of the Seismological Society of America, 2018, 108(4): 2248-2264. [21] Trugman D T, Shearer P M. Strong correlation between stress drop and peak ground acceleration for recent M 1-4 earthquakes in the San Francisco Bay Area[J]. Bulletin of the Seismological Society of America, 2018, 108(2): 929-945. [22] Zhu H, Sun Y, Zhao W, et al. Rapid learning of earthquake felt area and intensity distribution with real-time search engine queries[J]. Scientific Reports, 2020, 10(1): 5437. [23] DeVries P M R, Viégas F, Wattenberg M, et al. Deep learning of aftershock patterns following large earthquakes[J]. Nature, 2018, 560(7720): 632-634. [24] Rouet-Leduc B, Hulbert C, Lubbers N, et al. Machine learning predicts laboratory earthquakes[J]. Geophysical Research Letters, 2017, 44(18): 9276-9282. [25] Peng Z, Zhao P. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nature Geoscience, 2009, 2(12): 877-881. [26] Zhang M, Wen L X. An effective method for small event detection: match and locate (M&L)[J]. Geophysical Journal International, 2015, 200(3): 1523-1537. [27] Beaucé E, Frank W B, Romanenko A. Fast matched filter (FMF): An efficient seismic matched-filter search for both CPU and GPU architectures[J]. Seismological Research Letters, 2018, 89(1): 165-172. [28] Ross Z E, Trugman D T, Hauksson E, et al. Searching for hidden earthquakes in Southern California[J]. Science, 2019, 364(6442): 767-771. [29] Liu M, Zhang M, Zhu W Q, et al. Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker[J]. Geophysical Research Letters, 2020, 47(4): e2019GL086189. [30] Pesicek J D, Thurber C H, Zhang H, et al. Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10303. [31] Waldhauser F. Near-Real-Time double-difference event location using Long-Term seismic archives, with application to northern California[J]. Bulletin of the Seismological Society of America, 2009, 99(5): 2736-2748. [32] Waldhauser F, Ellsworth W L. Fault structure and mechanics of the Hayward Fault, California, from double-difference earthquake locations[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B3): 2054. [33] Allen R. Automatic phase pickers-their present use and future-prospects[J]. Bulletin of the Seismological Society of America, 1982, 72(6): S225-S242. [34] Allen R. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68(5): 1521-1532. [35] Leonard M, Kennett B L N. Multi-component autoregressive techniques for the analysis of seismograms[J]. Physics of the Earth and Planetary Interiors, 1999, 113(1-4): 247-263. [36] Sleeman R, van Eck T. Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings[J]. Physics of the Earth and Planetary Interiors, 1999, 113(1-4): 265-275. [37] 罗钧, 赵翠萍, 周连庆. 川滇块体及周边区域现今震源机制和应力场特征[J]. 地震地质, 2014, 36(2): 405-421. LUO Jun, ZHAO Cui-ping, ZHOU LIAN-qing. Characteristics of focal mechanisms and stress field of the Chuan-Dian rhombic block and its adjacent regions[J]. Seismology and Geology, 2014, 36(2): 405-421 (in Chinese). [38] Lei X L, Su J R, Wang Z W. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Science China Earth Sciences, 2020, 63(11): 1633-1660. [39] Richter C F. An instrumental earthquake magnitude scale[J]. Bulletin of the Seismological Society of America, 1935, 25(1): 1-32. [40] Gutenberg B. Amplitudes of surface waves and magnitudes of shallow earthquakes[J]. Bulletin of the Seismological Society of America, 1945, 35(1): 3-12. [41] Gutenberg B. Magnitude determination for deep-focus earthquakes[J]. Bulletin of the Seismological Society of America, 1945, 35(3): 117-130. [42] Gutenberg B. Amplitudes of P, PP, and S and magnitude of shallow earthquakes[J]. Bulletin of the Seismological Society of America, 1945, 35(2): 57-69. [43] Gutenberg B, Richter C F. Magnitude and energy of earthquakes[J]. Annali di Geofisica, American Association for the Advancement of Science, 1956, 9(1): 6-12. [44] Scordilis E M. Empirical global relations converting MS and mb to moment magnitude[J]. Journal of Seismology, 2006, 10(2): 225-236. [45] Kanamori H. The energy release in great earthquakes[J]. Journal of Geophysical Research, 1977, 82(20): 2981-2987. [46] Hanks T C, Kanamori H. A moment magnitude scale[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B5): 2348-2350. [47] 陈章立, 陈翰林, 赵翠萍, 等. 地震大小的度量[J]. 地震, 2014, 34(1): 1-12. CHEN Zhang-li, CHEN Han-lin, ZHAO Cui-ping, et al. Measuring the earthquake size[J]. Earthquake, 2014, 34(1): 1-12 (in Chinese). [48] Gupta H K. The present status of reservoir induced seismicity investigations with special emphasis on Koyna earthquakes[J]. Tectonophysics, 1985, 118(3-4): 257-279. [49] Gupta H K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India[J]. Earth-Science Reviews, 2002, 58(3-4): 279-310. [50] Walsh F R, Zoback M D. Oklahoma’s recent earthquakes and saltwater disposal[J]. Science Advances, 2015, 1(5): e1500195. [51] Foulger G R, Wilson M P, Gluyas J G, et al. Global review of human-induced earthquakes[J]. Earth-Science Reviews, 2018, 178: 438-514. [52] Grigoli F, Cesca S, Priolo E, et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: A European perspective: Challenges in induced seismicity[J]. Reviews of Geophysics, 2017, 55(2): 310-340. [53] 庄建仓, 马丽. 主震和余震从大森公式到ETAS模型[J]. 国际地震动态, 2000(5): 12-18. ZUANG Jian-cang, MA Li. Main shock and after shock: From the Omori formula to the ETAS model[J]. Recent Development in World Seismology, 2000(5): 12-18 (in Chinese). [54] 宋金, 蒋海昆. 序列衰减与余震激发研究进展及应用成果[J]. 地震地质, 2009, 31(3): 559-571. SONG Jin, JIANG Hai-kun. A Review on Decay and Generation of Aftershock Activity[J]. Seismology and Geology, 2009, 31(3): 559-571 (in Chinese). [55] 崔庆谷, 林国良, 李倩. 利用近震源区强震记录识别鲁甸6.5级地震后叠加的余震事件[J]. 大地测量与地球动力学, 2015, 35(6): 1069-1073. CUI Qing-gu, LIN Guo-liang, LI Qian. Recognizing aftershocks merged in main shock’s coda wave of Ludian M6.5 by strong acceleration recording near source region[J]. Journal of Geodesy and Geodynamics, 2015, 35(6): 1069-1073 (in Chinese). [56] 黄媛, 吴建平, 张天中, 等. 汶川8.0级大地震及其余震序列重定位研究[J]. 中国科学(D辑), 2008, 38(10): 1242-1249. HUANG Yuan, WU Jian-ping, ZHANG Tian-zhong. Study on the relocation of Wenchuan M8.0 earthquake and its aftershock sequence[J]. Science in China (Series D), 2008, 38(10): 1242-1249 (in Chinese). [57] 徐锡伟, 闻学泽, 叶建青, 等. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008, 30(3): 597-629. XU Xi-wei, WEN Xue-ze, YE Jian-qing, et al. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 2008, 30(3): 597-629 (in Chinese). [58] Allen R M, Gasparini P, Kamigaichi O, et al. The status of earthquake early warning around the world: An introductory overview[J]. Seismological Research Letters, 2009, 80(5): 682-693. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||