EARTHQUAKE ›› 2017, Vol. 37 ›› Issue (3): 127-137.
Previous Articles Next Articles
ZHANG Xue-hua,WANG Xiao-qing,YUAN Xiao-xiang,WANG Jin-xia
Received:
2017-01-04
Published:
2019-08-09
CLC Number:
ZHANG Xue-hua,WANG Xiao-qing,YUAN Xiao-xiang,WANG Jin-xia. Classification of Typical Building Roof Geometry Types based on Dense Point Clouds of SfM Method[J]. EARTHQUAKE, 2017, 37(3): 127-137.
[1] 张培震. 中国地震灾害与防震减灾[J]. 地震地质, 2008, 30(3): 577-583. [2] 王晓青, 黄树松, 丁香, 等. 尼泊尔8.1级地震建筑物震害遥感提取与分析[J]. 震灾防御技术, 2015, 10(3): 481-490. [3] 王晓青, 魏成阶, 苗崇刚, 等. 震害遥感快速提取研究以2003年2月24日巴楚—伽师6.8级地震为例[J]. 地学前缘, 2003, 10(s1): 285-291. [4] 朱博勤, 魏成阶, 张渊智. 航空遥感地震灾害信息的快速提取[J]. 自然灾害学报, 1998, 7(1): 34-39. [5] Trinder J C, Salah M. Aerial images and LIDAR data fusion for disater change detection[J]. Remote Sensing and Spatial Information Sciences, 2012, 1-4: 227-232. [6] 窦爱霞, 马宗晋, 黄文丽, 等. 基于机载LiDAR和多光谱图像的建筑物震害自动识别方法[J]. 遥感信息, 2013, 28(4): 103-109. [7] Johnson K, Nissen E, Saripalli S, et al. Rapid mapping of ultrafine fault zone topography with structure from motion[J]. Geosphere, 2014, 5(10): 969-986. [8] Smith M J, Chandler J, Rose J. High spatial resolution data acquisition for the geosciences: kite aerial photography[J]. Earth Surface Processes and Landforms, 2009, 34(1): 155-161. [9] Eisenbeiss H, Lambers K, Sauerbier M. Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter[J]. Proc Cipa XX International Symposium, 2005, 238-243. [10] Niethammer U, Rothmund S, James M. UAV-based remote sensing of landslides[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2010, ISPRS Comm. V(XXXVIII): Newcastle-upon-Tyne, U.K. [11] James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): 94-96. [12] Lucieer A, Jong S M D, Turner D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 2014, 38(1): 97-116. [13] Vosselman G. Building Reconstruction Using Plana r Faces in Very High Density Height Data[C]. International Archives of Photogrammetry and Remote Sensing, 1999, 32(3/2): 87-92. [14] Morgan M, Habib A. 3D TIN for Automatic Building Extraction from airborne Lase r Scanning Data[C]. The ASPRS Gateway to the New Millennium, St. Louis, Missouri, 2001. [15] Hofmann A D. Analysis of T in-structure Parameter Spaces in Airborne Laser Scanner Data for 3D Building Model Generation[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 2004, 35(B3): 302-307. [16] 尤红建, 苏林, 李树楷. 利用机载三维成像仪的DSM数据自动提取建筑物[J]. 武汉大学学报信息科学版, 2002, 27(4): 408-413 [17] Awrangjeb M, Fraser C. Automatic segmentation of raw LiDAR data for extraction of building roofs[J]. Remote Sensing, 2014, 6(5): 3716-3751. [18] Westoby M J, Brasington J, Glasser N F, et al. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications[J]. Geomorphology, 2012, 179: 300-314. [19] Snavely N. Scene reconstruction and visualization from Internet photo collections: A Survey[J]. Ipsj Transactions on Computer Vision and Applications, 2011, 3: 44-66. [20] 魏占玉, Arrowsmith Ramon, 何宏林, 等. 基于SfM方法的高密度点云数据生成及精度分析[J]. 地震地质, 2015, 37(02): 636-648. [21] Mikolajczyk K, Schmid C. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision, 2004, 1(60): 63-86. [22] Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 63-86. [23] 曾文宪, 陶本藻. 三维坐标转换的非线性模型[J]. 武汉大学学报(信息科学版), 2003, 28(5): 566-568. [24] 李陈侠. 东昆仑断裂带东段(玛沁—玛曲)晚第四纪长期滑动习性研究[D]. 中国地震局地质研究所, 2009. [25] Zhang W, Qi J, Wan P, et al. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation[J]. Remote Sensing, 2016, 6(8): 501. |
[1] | GUAN Zhao-xuan, WAN Yong-ge, ZHOU Ming-yue, WANG Run-yan, SONG Ze-yao, HUANG Shao-hua, GU Pei-yuan. Seismogenic Fault Plane and Geodynamic Discussion of the 2024 Wushi MS7.1 Earthquake, Xinjiang, China [J]. EARTHQUAKE, 2024, 44(2): 1-11. |
[2] | LI Yue, LIU Zhen-hui, MA Han-yu, WANG Yi-xi, SHAO Yong-xin. Permeability Changes of Tianjin Typical Observation Wells and Coseismic Response Mechanism to Maduo MS7.4 Earthquake [J]. EARTHQUAKE, 2024, 44(2): 33-51. |
[3] | JING Tao, Boonphor Phetphouthongdy, Chansouk Sioudom, LIU Yang-yang, LI Ji-geng, KANG Chun-li, MA Wei-yu. Analysis of Outgoing Longwave Radiation Changes before and after the Dengta MS5.1 Earthquake Based on Tidal Additional Tectonic Stress [J]. EARTHQUAKE, 2024, 44(2): 52-62. |
[4] | YANG Yan-ming, SU Shu-juan, WANG Lei. Determination of Rupture Direction and Seismogenic Structure of the 2020 Heerlinger ML4.5 Earthquake in Hohhot, Inner Mongolia [J]. EARTHQUAKE, 2024, 44(2): 63-85. |
[5] | WANG Ting-ting, BIAN Yin-ju, REN Meng-yi, YANG Qian-li, HOU Xiao-lin. Seismic Event Recognition Software [J]. EARTHQUAKE, 2024, 44(2): 104-119. |
[6] | SONG Cheng, ZHANG Yong-xian, XIA Cai-yun, BI Jin-meng, ZHANG Xiao-tao, WU Yong-jia, XU Xiao-yuan. Retrospective Study on the Forecasting of the Three MS≥5.0 Earthquakes Since 2019 in North China Based on PI Method [J]. EARTHQUAKE, 2024, 44(2): 120-134. |
[7] | LIU Jun-qing, ZHANG Xiao-gang, ZHANG Yu, CAI Hong-lei, CHEN Zhuo, BAO Xiu-min. Study of Seismic Moment Tensor Inversion by Multi-point Sources for Jishishan MS6.2 Earthquake on December 18, 2023, in Gansu Province, China [J]. EARTHQUAKE, 2024, 44(2): 169-177. |
[8] | HUANG Feng, XIONG Ren-wei, LIN Jing-dong, ZHAO Zheng, YANG Pan-xin. Geomorphic Index and Activity Characteristics of the Mid-Segment of Jiali Fault [J]. EARTHQUAKE, 2024, 44(1): 1-18. |
[9] | SHU Tian-tian, LUO Yan, ZHU Yin-jie. The Source Rupture Process and the Strong Ground Motion Estimation of the 2022 MS6.8 Earthquake in Luding, Sichuan [J]. EARTHQUAKE, 2024, 44(1): 19-36. |
[10] | WU Xu, XUE Bing, LI Jiang, ZHU Xiao-yi, ZHANG Bing, HUANG Shi. Design and Implementation of Borehole Comprehensive Observation Timing System [J]. EARTHQUAKE, 2024, 44(1): 37-49. |
[11] | BO Wan-ju, ZHANG Li-cheng, SU Guo-ying, XU Dong-zhuo, ZHAO Li-jun. Thoughts on Monitoring and Forecasting Methods of Strong Earthquake with Crust Deformation Data [J]. EARTHQUAKE, 2024, 44(1): 64-77. |
[12] | YUE Xiao-yuan, LI Yan-e, ZHONG Shi-jun, WANG Wei, WANG Yan, MA Liang. Anormalies of b-value Changes before M≥4.0 Earthquake in Tangshan Old Seismic Region [J]. EARTHQUAKE, 2024, 44(1): 94-108. |
[13] | JIA Xin-ye, BAI Shao-qi, JIA Yan-jie, LIU Fang, NA Re. Study on Lg Wave Attenuation and Site Response Characteristics in Central and Western of Inner Mongolia, China [J]. EARTHQUAKE, 2024, 44(1): 109-117. |
[14] | CHEN Guang-qi, WU Yan-qiang, XIA Ming-yao, LI Zhi-yuan. The Japan Noto Peninsula M7.6 Earthquake on January 1, 2024: Focal Characteristics, Disaster Situation and Emergency Response [J]. EARTHQUAKE, 2024, 44(1): 141-152. |
[15] | YANG Pan-xin, XIONG Ren-wei, HU Chao-zhong, GAO Yuan. Preliminary Analysis of the Seismogenic Tectonics for the 2023 Jishishan MS6.2 Earthquake in Gansu Province [J]. EARTHQUAKE, 2024, 44(1): 153-159. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||