[1] Sacks I S, Suyehiro S, Evertson D W. Sacks-Evertson strainmeter, its installation in Japan and some preliminary results concerning strain steps[J]. Proceedings of the Japan Academy, 1971, 47(9): 707-712. [2] Nikolaidis R. Observation of geodetic and seismic deformation with the Global Positioning System[D]. San Diego: University of California, San Diego, 2002. [3] McGarr A, Sacks I S, Linde A T, et al. Coseismic and other short-term strain changes recorded with Sacks-Evertson strainmeters in a deep mine, South Africa[J]. Geophysical Journal International, 1982, 70(3): 717-740. [4] Bernard P, Boudin F, Sacks S, et al. Continuous strain and tilt monitoring on the Trizonia island, Rift of Corinth, Greece[J]. Comptes Rendus Geoscience, 2004, 336(4-5): 313-323. [5] Stefànsson R. Advances in earthquake prediction[M]. Berlin: Springer-Verlag, 2011. [6] 邱泽华, 唐磊, 张宝红, 等. 用小波-超限率分析提取宁陕台汶川地震体应变异常[J]. 地球物理学报, 2012, 55(2): 538-546. QIU Ze-hua, TANG Lei, ZHANG Bao-hong, et al. Extracting anomaly of the Wenchuan earthquake from the dilatometer recording at NSH by means of Wavelet-Overrun Rate Analysis[J]. Chinese Journal of Geophysics, 2012, 55(2): 538-546 (in Chinese). [7] Machida Y, Araki E, Kimura T, et al. Installation of a high sensitivity ocean borehole strainmeter in the Nankai Trough under severe sea current conditions[J]. Marine Technology Society Journal, 2018, 52(3): 128-137. [8] Furuya I, Fukudome A. Characteristics of borehole volume strainmeter and its application to seismology[J]. Journal of Physics of the Earth, 1986, 34(3): 257-296. [9] Barbour A J, Crowell B W. Dynamic strains for earthquake source characterization[J]. Seismological Research Letters, 2017, 88(2A): 354-370. [10] 周龙寿, 邱泽华, 唐磊, 等. 用中国钻孔应变台网资料检验大震“前驱波”[J]. 地震, 2009, 39(3): 67-78. ZHOU Long-shou, QIU Ze-hua, TANG Lei, et al. Testing precursory wave before strong earthquake using borehole strain data[J]. Earthquake, 2009, 29(3): 67-78 (in Chinese) [11] 邱泽华, 唐磊, 赵树贤, 等. 用应变地震观测求解震源矩张量的基本原理[J]. 地球物理学报, 2020, 63(2): 551-561. QIU Ze-hua, TANG Lei, ZHAO Shu-xian, et al. Fundamental principle to determine seismic source moment tensor using strain seismographs[J]. Chinese Journal of Geophysics, 2020, 63(2): 551-561 (in Chinese). [12] Linde A T, Gladwin M T, Johnston M J S, et al. A slow earthquake sequence on the San Andreas fault[J]. Nature, 1996, 383(6595): 65-68. [13] Nanjo K Z. Capability of Tokai Strainmeter Network to detect and locate a slow slip: First results[J]. Pure and Applied Geophysics, 2019, 177(6): 2701-2718. [14] Linde A T, Agustsson K, Sacks I S, et al. Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring[J]. Nature, 1993, 365(6448): 737-740. [15] Asai Y, Ishii H, Aoki H. Comparison of tidal strain changes observed at the borehole array observation system with in situ rock properties in the Tono region, central Japan[J]. Journal of Geodynamics, 2009, 48(3): 292-298. [16] Lorenz R D, Kedar S, Murdoch N, et al. Seismometer detection of dust devil vortices by ground tilt[J]. Bulletin of the Seismological Society of America, 2015, 105(6): 3015-3023. [17] Valovcin A, Tanimoto T. Modeling the excitation of seismic waves by the Joplin tornado[J]. Geophysical Research Letters, 2017, 44(20): 10256-10261. [18] 张凌空, 吴利军, 杨颖. 雷暴产生的气压突变对体应变与同井水位干扰的对比研究[J]. 中国地震, 2012, 28(1): 69-77. ZHANG Ling-kong, WU Li-jun, YANG Ying. Comparative study of the interference of mutation pressure generated by thunderstorms with volume strain and same well water-level[J]. Earthquake Research in China, 2012, 28(1): 69-77 (in Chinese). [19] Tsai V C, Kanamori H, Artru J. The morning glory wave of southern California[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02307. [20] Tytell J, Vernon F, Hedlin M, et al. The USArray Transportable Array as a platform for weather observation and research[J]. Bulletin of the American Meteorological Society, 2016, 97(4): 603-619. [21] 杨小林, 危自根, 杨锦玲, 等. 飑线对定点地形变观测的影响特征与机理以陕西关中盆地为例[J]. 中国地震, 2019, 35(3): 465-475. YANG Xiao-lin, WEI Zi-gen, YANG Jin-ling, et al. Ground deformation induced by a strong squall line: A case study in the Weihe Basin, Shaanxi Province[J]. Earthquake Research in China, 2019, 35(3): 465-475 (in Chinese). [22] 檜皮久義, 佐藤馨, 二瓶信一, 等. 埋込式体積歪計の気圧補正[J]. 験震時報, 1983, 47(3-4): 91-111. Hikawa H, Sato K, Nihei S, et al. Correction due to atmospheric pressure changes of data of the borehole volume strainmeter[J]. Quarterly Journal of Seismology, 1983, 47(3-4): 91-111 (in Japanese). [23] Liu C C, Linde A T, Sacks I S. Slow earthquakes triggered by typhoons[J]. Nature, 2009, 459(7248): 833-836. [24] Hsu Y J, Chang Y S, Liu C C, et al. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(6): 4556-4571. [25] Nakao S, Linde A T, Miura S, et al. Nonlinear barometric response of borehole strainmeters and its interpretation[J]. Journal of Physics of the Earth, 1989, 37(6): 357-383. [26] 周龙寿, 邱泽华, 唐磊. 地壳应变场对气压短周期变化的响应[J]. 地球物理学进展, 2008, 23(6): 1717-1726. ZHOU Long-shou, QIU Ze-hua, TANG Lei. The response of crustal strain field to short-period atmospheric pressure variation[J]. Progress in Geophysics, 2008, 23(6): 1717-1726 (in Chinese). [27] 张凌空, 王广才, 牛安福. 周期气压波对地壳应变场观测影响的若干因素分析[J]. 地震学报, 2011, 33(3): 351-361. ZHANG Ling-kong, WANG Guang-cai, NIU An-fu. Analysis on several factors of periodic air pressure wave affecting crustal strain field[J]. Acta Seismologica Sinica, 33(3): 351-361 (in Chinese). [28] 张凌空, 牛安福. 周期气压波对地壳岩石应变测量影响的理论解[J]. 地球物理学进展, 2019, 34(4): 1366-1370. ZHANG Ling-kong, NIU An-fu. Theoretical solution of periodic pressure wave effect on crustal strain measurement[J]. Progress in Geophysics, 2019, 34(4): 1366-1370 (in Chinese). [29] 寿绍文. 中尺度气象学(第三版)[M]. 北京: 气象出版社, 2016. SHOU Shao-wen. Mesometeorology (3rd edition)[M]. Beijing: China Meteorological Press, 2016 (in Chinese). [30] 沈杭锋, 翟国庆, 朱补全, 等. 浙江沿海中尺度辐合线对飑线发展影响的数值试验[J]. 大气科学, 2010, 34(6): 1127-1140. SHEN Hang-feng, ZHAI Guo-qing, ZHU Bu-quan, et al. A model study of impact of coastal mesoscale convergence line on development of squall line over Zhejiang Province[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(6): 1127-1140 (in Chinese). [31] 高坤, 翟国庆, 俞樟孝, 等. 华东中尺度地形对浙北暴雨影响的模拟研究[J]. 气象学报, 1994, 52(2): 157-164. GAO Kun, ZHAI Guo-qing, YU Zhang-xiao, et al. The simulation study of the meso-scale orographic effects on heavy rain in East China[J]. Acta Meteorologica Sinica, 1994, 52(2): 157-164 (in Chinese). [32] 黎慧琦, 张莹, 朱佩君, 等. 2012年7月发生于浙南山地的短飑线过程研究[J]. 浙江大学学报(理学版), 2014, 41(4): 458-467+476. LI Hui-qi, ZHANG Ying, ZHU Pei-jun, et al. Study on the genesis of a short squall line in mountains of Southern Zhejiang in 2012[J]. Journal of Zhejiang University (Science Edition), 2014, 41(4): 458-467+476 (in Chinese). [33] 沈杭锋, 方桃妮, 蓝俊倩, 等. 一次强飑线过程极端大风的中尺度分析[J]. 气象学报, 2019, 77(5): 806-822. SHEN Hang-feng, FANG Tao-ni, LAN Jun-qian, et al. Mesoscale analysis of the extremely damaging gale in a severe squall line[J]. Acta Meteorologica Sinica, 2019, 77(5): 806-822 (in Chinese). [34] 苏恺之, 李海亮, 张钧, 等. 钻孔地应变观测新进展[M]. 北京: 地震出版社, 2003. SU Kai-zhi, LI Hai-liang, ZHANG Jun, et al. New development of borehole strain observation[M]. Beijing: Seismological Press, 2003 (in Chinese). [35] Huang N E, Wu Z H. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): RG2006. [36] 张晖辉, 颜玉定, 余怀忠, 等. 循环载荷下大试件岩石破坏声发射实验岩石破坏前兆的研究[J]. 岩石力学与工程学报, 2004, 23(21): 3621-3628. ZHANG Hui-hui, YAN Yu-ding, YU Huai-zhong, et al. Acoustic emission experimental research on large-scaled rock failure under cycling load: Fracture precursor of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3621-3628 (in Chinese). [37] 谢仁海, 渠天祥, 钱光谟. 构造地质学[M]. 徐州: 中国矿业大学出版社, 2007. XIE Ren-hai, QU Tian-xiang, QIAN Guang-mo. Structural geology[M]. Xuzhou: China University of Mining and Technology Press, 2007 (in Chinese). [38] 任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40(7): 860-874. REN Fu-min, GAO Hui, LIU Lü-liu, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40(7): 860-874 (in Chinese). |