[1] 赵翠萍, 陈章立, 郑斯华, 等. 伽师震源区中等强度地震矩张量反演及其应力场特征[J]. 地球物理学报, 2008, 51(3): 782-792. ZHAO Cui-ping, CHEN Zhang-li, ZHENG Si-hua, et al. Moment inversion of moderate earthquakes and the locally perturbed stress field in the Jiashi source region[J]. Chinese Journal of Geophysics, 2008, 51(3): 782-792 (in Chinese). [2] 唐兰兰, 赵翠萍, 王海涛. 2008年新疆乌恰6.8级地震序列震源特征及帕米尔东北缘应力场研究[J]. 地球物理学报, 2012, 55(4): 1228-1239. TANG Lan-lan, ZHAO Cui-ping, WANG Hai-tao. Study on the source characteristics of the 2008 MS6.8 Wuqia, Xinjiang earthquake sequence and the stress field on the northeastern boundary of Pamir[J]. Chinese Journal of Geophysics, 2012, 55(4) : 1228-1239 (in Chinese). [3] 罗艳, 赵里, 曾祥方, 等. 芦山地震序列震源机制及其构造应力场空间变化[J]. 中国科学: 地球科学, 2015, 45(4): 538-550. LUO Yan, ZHAO Li, ZENG Xiang-fang, et al. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field[J]. Science China: Earth Sciences, 2015, 45(4): 538-550 (in Chinese). [4] Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2825-2852. [5] Dreger D S, Helmberger D V. Broadband modeling of local earthquakes[J]. Bulletin of the Seismological Society of America, 1990, 80(5): 1162-1179. [6] Dreger D S, Uhrhammer R A, Pasyanos M E, et al. Regional and far-regional earthquake locations and source parameters using sparse broadband networks: A test on the Ridgecrest sequence[J]. Bulletin of the Seismological Society of America, 1998, 88(6): 1353-1362. [7] Kanamori H, Rivera L. Source inversion of W phase: Speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175(1): 222-238. [8] Zhao X, Duputel Z, Yao Z X. Regional W-phase source inversion for moderate to large earthquakes in China and neighboring areas[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10052-10068. [9] Zhao L S, Helmberger D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104. [10] Zhu L P, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-1641. [11] 郑勇, 马宏生, 吕坚, 等. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学(D辑), 2009, 39(4): 413-426. ZHENG Yong, MA Hong-sheng, LÜ Jian, et al. Source mechanism of strong aftershocks (MS≥5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonic[J]. Science in China (Series D), 2009, 39(4): 413-426 (in Chinese). [12] 吕坚, 王晓山, 苏金蓉, 等. 芦山7.0级地震序列的震源位置与震源机制解特征[J]. 地球物理学报, 2013, 56(5): 1753-1763. LÜ Jian, WANG Xiao-shan, SU Jin-rong, et al. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence[J]. Chinese Journal of Geophysics, 2013, 56(5): 1753-1763 (in Chinese). [13] 罗钧, 赵翠萍, 周连庆. 2013年8月香格里拉德钦—得荣MS5.9地震序列震源机制与应力场特征[J]. 地球物理学报, 2015, 58(2): 424-435. LUO Jun, ZHAO Cui-ping, ZHOU Lian-qing. Focal mechanisms and stress field of the Shangri-La Deqin, Yunnan Province-Derong, Sichuan Province MS5.9 earthquake sequence in August, 2013[J]. Chinese Journal of Geophysics, 2015, 58(2): 424-435 (in Chinese). [14] Han L B, Zeng X F, Jiang C S, et al. Focal mechanisms of the 2013 MW6.6 Lushan, China earthquake and high-resolution aftershock relocations[J]. Seismological Research Letters, 2014, 85(1): 8-14. [15] 李君, 王勤彩. 2013年松原5级震群序列精定位、 震源机制解及发震构造特征[J]. 地震, 2018, 38(4): 62-73. LI Jun, WANG Qin-cai. Relocation and focal mechanism of the Songyuan earthquake swarm sequence in 2013[J]. Earthquake, 2018, 38(4): 62-73 (in Chinese). [16] Saikia C K. Modified frequency-wavenumber algorithm for regional seismograms using Filon's quadrature: Modelling of Lg waves in Eastern North America[J]. Geophysical Journal International, 1994, 118(1): 142-158. [17] Zhu L P, Ben-Zion Y. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophysical Journal International, 2013, 194(2): 839-843. [18] Kagan Y Y. 3-D rotation of double-couple earthquake sources[J]. Geophysical Journal International, 1991, 106(3): 709-716. [19] 万永革. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 2019, 62(12): 4718-4728. WAN Yong-ge. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 2019, 62(12): 4718-4728 (in Chinese). [20] 徐锡伟, 陈桂华, 王启欣, 等. 九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论[J]. 地球物理学报, 2017, 60(10): 4018-4026. XU Xi-wei, CHEN Gui-hua, WANG Qi-xin, et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau[J]. Chinese Journal of Geophysics, 2017, 60(10): 4018-4026 (in Chinese). [21] 房立华, 吴建平, 苏金蓉, 等. 四川九寨沟MS7.0地震主震及其余震序列精定位[J]. 科学通报, 2018, 63(7): 649-662. FANG Li-hua, WU Jian-ping, SU Jin-rong, et al. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake[J]. Chinese Science Bulletin, 2018, 63(7): 649-662 (in Chinese). [22] Jiang G Y, Wen Y M, Li K, et al. A NE-trending oblique-slip fault responsible for the 2016 Zaduo earthquake (Qinghai, China) revealed by InSAR Data[J]. Pure and Applied Geophysics, 2018, 175: 4275-4288. [23] Zhang X, Fu Z, Xu L S, et al. The 2018 MS5.9 Mojiang earthquake: Source model and intensity based on near-field seismic recordings[J]. Earth and Planetary Physics, 2019, 3(3): 268-281. [24] 崔仁胜, 赵翠萍, 周连庆, 等. 2020年1月19日新疆伽师MS6.4地震序列的活动特征和发震构造[J]. 地震地质, 2021, 43(2): 329-344. CUI Ren-sheng, ZHAO Cui-ping, ZHOU Lian-qing, et al. Seismicity feature and seismogenic fault of the MS6.4 earthquake sequence on January 19, 2020 in Jiashi, Xinjiang[J]. Seismology and Geology, 2021, 43(2): 329-344 (in Chinese). [25] He Y Q, Wang T, Fang L H, et al. The 2020 MW6.0 Jiashi earthquake: Coinvolvement of thin-skinned thrusting and basement shortening in shaping the Keping-tage fold-and-thrust belt in southwestern Tian Shan[J]. Seismological Research Letters, 2021, 93(2A): 680-692. |