EARTHQUAKE ›› 2024, Vol. 44 ›› Issue (2): 86-103.doi: 10.12196/j.issn.1000-3274.2024.02.006
Previous Articles Next Articles
WANG Hui, CAO Jian-ling, YAO Qi, SHI Yu-tao, LIU Yue
Received:
2023-05-11
Revised:
2024-01-30
Online:
2024-04-30
Published:
2024-04-28
CLC Number:
WANG Hui, CAO Jian-ling, YAO Qi, SHI Yu-tao, LIU Yue. Two-dimensional Numerical Simulations of Effects of Static Stress Disturbance on Seismic Rupture Propagation Near Stepovers of Striking-slip Fault[J]. EARTHQUAKE, 2024, 44(2): 86-103.
[1] 丁国瑜, 田勤俭, 孔凡臣, 等. 活断层分段[M]. 北京: 地震出版社, 1993. DING Guo-yu, TIAN Qin-jian, KONG Fan-chen, et al. Segmentation of active fault[M]. Beijing: Seismological Press, 1993 (in Chinese). [2] Sylvester A G. Strike-slip faults[J]. Geological Society of America Bulletin, 1988, 100(11): 1666-1703. [3] Wesnousky S G. Predicting the endpoints of earthquake ruptures[J]. Nature, 2006, 444: 358-360. [4] 李正芳, 肖海波, 周本刚. 阶区对走滑型地震地表破裂带传播与终止行为的影响[J]. 地震地质, 2015, 37(1): 126-138. LI Zheng-fang, XIAO Hai-bo, ZHOU Ben-gang. Effect of fault steps on propagation and termination behavior of strike-slip earthquake surface ruptures[J]. Seismology and Geology, 2015, 37(1): 126-138 (in Chinese). [5] Harris R A, Day S M. Dynamics of fault interaction: Parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B3): 4461-4472. [6] 王勤彩, 陈章立, 郑斯华. 汶川大地震余震序列震源机制的空间分段特征[J]. 科学通报, 2009, 54(16): 2348-2354. WANG Qin-cai, CHEN Zhang-li, ZHENG Si-hua. Spatial segmentation characteristic of focal mechanism of aftershock sequence of Wenchuan earthquake[J]. Chinese Science Bulletin, 2009, 54(16): 2348-2354 (in Chinese). [7] Cunningham W D, Mann P. Tectonics of strike-slip restraining and releasing bends[J]. Geological Society, London, Special Publications, 2007, 290: 1-12. [8] Mann P. Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault systems[J]. Geological Society, London, Special Publications, 2007, 290: 13-142. [9] McClay K, Bonora M. Analog models of restraining stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2): 233-260. [10] Siler D L, Hinz N H, Faulds J E. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields[J]. GSA Bulletin, 2018, 130(7-8): 1273-1288. [11] Luo Y, Zhao L, Tian J. Spatial and temporal variations of stress field in the Longmenshan Fault Zone after the 2008 Wenchuan, China earthquake[J]. Tectonophysics, 2019, 767: 228172. [12] Lozos J C, Harris R A, Murray J R, et al. Dynamic rupture models of earthquakes on the Bartlett Springs fault, Northern California[J]. Geophysical Research Letters, 2015, 42(11): 4343-4349. [13] Harris R A, Day S M. Dynamic 3D simulations of earthquakes on en echelon faults[J]. Geophysical Research Letters, 1999, 26(14): 2089-2092. [14] Yang H, Yao S, He B, et al. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth and Planetary Science Letters, 2019, 520: 10-17. [15] Wang H, Liu M, Duan B, et al. Rupture propagation along stepovers of strike-slip faults: Effects of initial stress and fault geometry[J]. Bulletin of the Seismological Society of America, 2020, 110(3): 1011-1024. [16] Lozos J C. A case for historic joint rupture of the San Andreas and San Jacinto faults[J]. Science Advances, 2016, 2(3): e1500621. [17] Duan B. Multicycle dynamics of the Aksay bend along the Altyn Tagh fault in northwest China: 1. a simplified double bend[J]. Tectonics, 2019, 38(3): 1101-1119. [18] Yao S, Yang H. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault[J]. Earth and Planetary Science Letters, 2022, 578: 117296. [19] Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6762): 605-609. [20] King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953. [21] 袁杰, 朱守彪. 断层阶区对震源破裂传播过程的控制作用研究[J]. 地球物理学报, 2014, 57(5): 1510-1521. YUAN Jie, ZHU Shou-biao. Effects of stepover on rupture propagation[J]. Chinese Journal of Geophysics, 2014, 57(5): 1510-1521 (in Chinese). [22] Harris R A, Barall M, Archuleta R, et al. The SCEC/USGS dynamic earthquake rupture code verification exercise[J]. Seismological Research Letters, 2009, 80(1): 119-126. [23] Harris R A, Barall M, Aagaard B, et al. A suite of exercises for verifying dynamic earthquake rupture codes[J]. Seismological Research Letters, 2018, 89(3): 1146-1162. [24] Duan B, Oglesby D D. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05309. [25] Day S M, Dalguer L A, Lapusta N, et al. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B12): B12307. [26] Andrews D J. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687. [27] Andrews D J. Rupture propagation with finite stress in antiplane strain[J]. Journal of Geophysical Research, 1976, 81(20): 3575-3582. [28] Byerlee J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4-5): 615-626. [29] Allmann B P, Shearer P M. Global variations of stress drop for moderate to large earthquakes[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1): B01310. [30] Lozos J C, Oglesby D D, Brune J N. The effects of fault stepovers on ground motion[J]. Bulletin of the Seismological Society of America, 2013, 103(3): 1922-1934. [31] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. [32] Ryan K J, Oglesby D D. Dynamically modeling fault step overs using various friction laws[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(7): 5814-5829. [33] Day S M. Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress[J]. Bulletin of the Seismological Society of America, 1982, 72(6A): 1881-1902. [34] Ye J, Liu M, Wang H. A numerical study of strike-slip bend formation with application to the Salton Sea pull-apart basin[J]. Geophysical Research Letters, 2015, 42(5): 1368-1374. [35] Wang H, Liu M, Ye J, et al. Strain partitioning and stress perturbation around stepovers and bends of strike-slip faults: Numerical results[J]. Tectonophysics, 2017, 721: 211-226. [36] Micklethwaite S, Ford A, Witt W, et al. The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation[J]. Geofluids, 2015, 15: 240-251. [37] Gürbüz A. Geometric characteristics of pull-apart basins[J]. Lithosphere, 2010, 2(3): 199-206. [38] Biasi G P, Wesnousky S G. Steps and gaps in ground ruptures: Empirical bounds on rupture propagation[J]. Bulletin of the Seismological Society of America, 2016, 106(3): 1110-1124. [39] Wesnousky S G. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1609-1632. [40] Hu F, Zhang Z, Chen X. Investigation of earthquake jump distance for strike-slip step overs based on 3-D dynamic rupture simulations in an elastic half-space[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(2): 994-1006. [41] Lozos J C. The effect of along-strike variation in dip on rupture propagation on strike-slip faults[J]. Geosphere, 2021, 17(6): 1616-1630. [42] Peshette P, Lozos J, Yule D, et al. Dynamic rupture modeling to investigate the role of fault geometry in jumping rupture between parallel-trace thrust faults[J]. Bulletin of the Seismological Society of America, 2019, 109(6): 2168-2186. [43] Liu D, Duan B, Prush V B, et al. Observation-constrained multicycle dynamic models of the Pingding Shan earthquake gate along the Altyn Tagh fault[J]. Tectonophysics, 2021, 814: 228948. [44] Liu D, Duan B, Scharer K, et al. Observation-constrained multicycle dynamic models of the southern San Andreas and the northern San Jacinto faults: Addressing complexity in paleoearthquake extent and recurrence with realistic 2D fault geometry[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB023420. [45] Rice J R. Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault[M]∥International geophysics. Academic Press, 1992, 51: 475-503. [46] Ramos M D, Thakur P, Huang Y, et al. Working with dynamic earthquake rupture models: A practical guide[J]. Seismological Research Letters, 2022, 93(4): 2096-2110. [47] Zhang W, Iwata T, Irikura K, et al. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5): 2232. [48] Bai K, Ampuero J P. Effect of seismogenic depth and background stress on physical limits of earthquake rupture across fault step overs[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10280-10298. [49] Lozos J C, Oglesby D D, Duan B, et al. The effects of double fault bends on rupture propagation: A Geometrical parameter study[J]. Bulletin of the Seismological Society of America, 2011, 101(1): 385-398. [50] Lozos J C, Oglesby D D, Brune J N, et al. Rupture propagation and ground motion of strike-slip stepovers with intermediate fault segments[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 387-399. [51] Lozos J C, Oglesby D D, Brune J N, et al. Small intermediate fault segments can either aid or hinder rupture propagation at stepovers[J]. Geophysical Research Letters, 2012, 39(18): L18305. [52] Liu Z, Duan B. Coseismic slip gradient and rupture jumps on parallel strike-slip faults[J]. Bulletin of the Seismological Society of America, 2016, 106(1): 204-212. [53] Lozos J C, Dieterich J H, Oglesby D D. The effects of d0 on rupture propagation on fault stepovers[J]. Bulletin of the Seismological Society of America, 2014, 104(4): 1947-1953. [54] Aochi H, Madariaga R, Fukuyama E. Effect of normal stress during rupture propagation along nonplanar faults[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B2): 2038. [55] Finzi Y, Langer S. Damage in step-overs may enable large cascading earthquakes[J]. Geophysical Research Letters, 2012, 39(16). [56] Yu H, Hu F, Xu J, et al. Dynamic rupture simulation of the 1833 Songming, Yunnan, China, M8.0 earthquake: Effects from stepover location and overlap distance[J]. Earth and Space Science, 2022, 9(2): e2021EA002100. [57] Field E H, Jordan T H, Page M T, et al. A synoptic view of the third Uniform California earthquake rupture forecast (UCERF3)[J]. Seismological Research Letters, 2017, 88(5): 1259-1267. [58] Kaiser A, Balfour N, Fry B, et al. The 2016 Kaikōura, New Zealand, earthquake: Preliminary seismological report[J]. Seismological Research Letters, 2017, 88(3): 727-739. [59] Hamling I J, Hreinsdóttir S, Clark K, et al. Complex multifault rupture during the 2016 MW7.8 Kaikōura earthquake, New Zealand[J]. Science, 2017, 356(6334): eaam7194. [60] Ulrich T, Gabriel A A, Ampuero J P, et al. Dynamic viability of the 2016 MW7.8 Kaikōura earthquake cascade on weak crustal faults[J]. Nature Communications, 2019, 10(1): 1213. [61] Caniven Y, Dominguez S, Soliva R, et al. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle: Insights from a strike-slip fault laboratory model[J]. Earth and Planetary Science Letters, 2017, 480: 147-157. [62] Milner K R, Shaw B E, Field E H. Enumerating plausible multifault ruptures in complex fault systems with physical constraints[J]. Bulletin of the Seismological Society of America, 2022, 112(4): 1806-1824. |
[1] | ZOU Zhen-yu, JIANG Zai-sen, WANG Qi-xin, LIU Tai, CUI Yue-ju. Study on the Dynamic Evolution Characteristics of Surface Displacement for Strike-slip Fault during the Seismogenic Process [J]. EARTHQUAKE, 2019, 39(4): 118-126. |
[2] | LI Yuan, LIU Xi-kang, LIU Xia, DU Xue-song, WAN Yong-kui. Numerical Simulation of the Cross-fault Baseline Anomalies of Trend Break and Annual Cycle Disappearance at the Tangshan Station [J]. EARTHQUAKE, 2019, 39(1): 39-47. |
[3] | ZHANG Guo-ling,JIA Li-feng,QIAO Zi-yun,GUO Xue-zeng,NIU Shu-yu. Quantitative Analysis of Georesistivity Disturbances at Xingji Station, Hebei Province [J]. EARTHQUAKE, 2017, 37(4): 102-111. |
[4] | WU Ye,ZHAO Xiao-yan,SHI Yan-bin,YU Zi-zhao,HE Xin-juan, HU Po,XIONG Zhong-hua. Dispersion Analysis Using Pseudo-spectral Algorithm in Acoustic Wave Numerical Simulation [J]. EARTHQUAKE, 2017, 37(2): 135-146. |
[5] | SHI Yu-tao, LIU Lan-bo, GAO Yuan. Constructing Anisotropic Model from Directional Heterogeneity Distribution [J]. EARTHQUAKE, 2015, 35(2): 1-10. |
[6] | LIU Cui, SHI Yao-lin, QIAO Yan-chao, DENG Jin-fu, LI Ning, DUAN Pei-xin. Numeric Simulation of Early Jurassic Magma-heating Supply in the Yanshan Area [J]. EARTHQUAKE, 2013, 33(4): 257-268. |
[7] | JING Hui-min, ZHANG Huai, WU Zhong-liang, XUN Yang, WANG Ji, SHI Yao-lin. Tsunami Constraints on Finite Fault Models: the March 11, 2011 Tohoku Earthquake [J]. EARTHQUAKE, 2013, 33(4): 207-213. |
[8] | ZHANG Si-qi, ZHANG Huai, SHI Yao-lin. A Study on Anisotropy of Solid-tidal Strain [J]. EARTHQUAKE, 2013, 33(4): 190-195. |
[9] | ZHENG Liang, ZHANG Huai, SUN Yu-jun, CHENG Hui-hong, ZHANG Bei, SHI Yao-lin. Comparison of 2D and 3D Finite Element Simulations in the Research of Reservoir Induced Earthquakes [J]. EARTHQUAKE, 2013, 33(4): 162-171. |
[10] | YAN Zhen-zhen, ZHANG Huai, FAN Xiang-tao, DU Xiao-ping, SHI Yao-lin. Numerical Simulation of River Evolution Processes under Strike-slip Faulting [J]. EARTHQUAKE, 2013, 33(4): 105-114. |
[11] | CAO Jian-ling, ZHANG Jing, WANG Hui, FANG Yin. Numrical Simulation of Fault Deformation in the Capital Region of China [J]. EARTHQUAKE, 2013, 33(3): 116-123. |
[12] | YANG Xing-yue, CHEN Lian-wang, YANG Li-ming, LI Yu-jiang. Effect on Seismic Situation of Gansu Region from Several Strong Earthquakes around the Bayan Har Block [J]. EARTHQUAKE, 2013, 33(3): 77-89. |
[13] | GU Shen-yi, LIU Bo-wei, ZHANG Hui, LIU Yang, XIE Xiao-jing, YE Xiang-ding. Numerical Simulation of Coseismic Response and Mechanism of Borehole Water Temperature to Far-field Strong Earthquakes [J]. EARTHQUAKE, 2013, 33(1): 29-39. |
[14] | ZHANG Hui, JIAO Ming-ruo, LIU Xia. Numerical Simulations of the Influencing Mechanism of the Pacific Plate Subduction to NE China on Deep and Shallow Earthquakes [J]. EARTHQUAKE, 2012, 32(2): 135-144. |
[15] | ZOU Zhen-xuan, FU Jian-fu, ZHU Yuan-qing, LI Jun. Tsunami Simulation for the Coast Area of East China [J]. EARTHQUAKE, 2011, 31(4): 118-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||