[1] 鱼金子, 车用太, 刘五洲, 等. 井水温度微动态形成的水动力学机制研究[J]. 地震, 1997, 17(4): 389-396. YU Jin-zi, CHE Yong-tai, LIU Wu-zhou, et al. Preliminary study on hydrodynamic mechanism of microbehavior of water temperature in well[J]. Earthquake, 1997, 17(4): 389-396 (in Chinese). [2] 车用太, 刘喜兰, 姚宝树, 等. 首都圈地区井水温度的动态类型及其成因分析[J]. 地震地质, 2003, 25(3): 403-420. CHE Yong-tai, LIU Xi-lan, YAO Bao-shu, et al. Well water temperature behaviors in capital circle and their formation mechanism[J]. Seismology and Geology, 2003, 25(3): 403-420 (in Chinese). [3] 张子广, 张素欣, 李薇, 等. 昌黎井水温潮汐形成机理分析[J]. 地震, 2007, 27(3): 34-40. ZHANG Zi-guang, ZHANG Su-xin, LI Wei, et al. Analysis on the mechanism of formation characteristics of water temperature tide in Changli well[J]. Earthquake, 2007, 27(3): 34-40 (in Chinese). [4] 杨竹转, 邓志辉, 杨贤和, 等. 井孔水温动态变化的影响因素探讨[J]. 地震, 2010, 30(2): 71-79. YANG Zhu-zhuan, DENG Zhi-hui, YANG Xian-he, et al. Study on the influencing factors of well water-temperature changes[J]. Earthquake, 2010, 30(2): 71-79 (in Chinese). [5] 盛艳蕊, 张子广, 张素欣, 等. 黄骅井水位水温同步反向变化成因分析[J]. 华北地震科学, 2010, 28(4): 37-40. SHENG Yan-rui, ZHANG Zi-guang, ZHANG Su-xin, et al. Analysis of synchronous-reverse change of water level and water temperature in Huanghua well[J]. North China Earthquake Sciences, 2010, 28(4): 37-40 (in Chinese). [6] 张军, 陶月潮, 孙盼盼, 等. 安徽巢湖井数字化水温资料分析[J]. 地震研究, 2011, 34(2): 131-135. ZHANG Jun, TAO Yue-chao, SUN Pan-pan, et al. Analysis on the digital temperature data of the Chaohu well in Anhui Province[J]. Journal of Seismological Research, 2011, 34(2): 131-135 (in Chinese). [7] 李仲巍, 梁国经, 郑双凤, 等. 抚松井水温动态特征分析[J]. 防灾减灾学报, 2012, 28(1): 75-79. LI Zhong-wei, LIANG Guo-Jing, ZHENG Shuang-feng, et al. Analysis of the dynamic characteristics of Fusong well’s water temperature[J]. Journal of Disaster Prevention and Reduction, 2012, 28(1): 75-79 (in Chinese). [8]车用太, 鱼金子. 井水温度观测中有待解决的若干基本问题[J]. 中国地震, 2013, 29(3): 306-315. CHE Yong-tai, YU Jin-zi. Some basic problems in well water temperature observation[J]. Earthquake Research in China, 2013, 29(3): 306-315 (in Chinese). [9] Danis C. Use of groundwater temperature data in geothermal exploration: The example of Sydney Basin, Australia[J]. Hydrogeology Journal, 2014, 22(1): 87-106. [10] Gibson M L, Hinman N W. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): Hydrology and geochemistry[J]. Hydrogeology Journal, 2013, 21(4): 919-933. [11] Ozyurt N N. Analysis of drivers governing temporal salinity and temperature variations in groundwater discharge from Altug Submarine Karst Cave (Kas-Turkey)[J]. Environmental Geology, 2008, 54(4): 731-736. [12] Santosa D P P, Hadian M S D, Zakaria Z. Hidrostratigrafi dan geometri akuifer cekungan air tanah Palu, Provinsi Sulawesi tengah pasca gempa bumi[J]. Journal Sumber Daya Air, 2021, 17(1): 25-38. Santosa D P P, Hadian M, Zakaria Z. Hydrostratigraphy and aquifer geometry in Palu groundwater Basin, central Sulawesi Province after earthquake[J]. Jurnal Sumber Daya Air, 2021, 17(1): 25-38 (in Indonesian). [13] Smith A J, Pollock D W, Palmer D. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: Investigation by multiple methods[J]. Hydrogeology Journal, 2010, 18(5): 1235-1252. [14] Terada A, Hashimoto T, Kagiyama T. A water flow model of the active crater lake at Aso Volcano, Japan: Fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system[J]. Bulletin of Volcanology, 2012, 74(3): 641-655. |