[1] 江娃利. 北京平谷地区地表陡坎的成因识别[J]. 地震地质, 1999, 21(4): 309-315. JIANG Wa-li. On identifying the formation mechanism of surface scarps in Pinggu area of Beijing [J]. Seismology and Geology, 1999, 21(4): 309-315 (in Chinese). [2] 邓前辉, 王继军, 汤吉, 等. 三河—平谷8级大震区地壳上地幔电性结构特征[A]. 中国地震学会. 中国地震学会第八次学术大会论文摘要集[C]. 北京: 地震出版社, 2000. DENG Qian-hui, WANG Ji-jun, TANG Ji, et al. Electrical structures of the crust and upper mantle in Sanhe-Pinggu M8 earthquake area[A]. Seismological Society of China. Collection of the 8th general assembly of Seismological Society of China[C]. Beijing: Seismological Press, 2000 (in Chinese). [3] 江娃利, 侯治华, 肖振敏, 等. 北京平原夏垫断裂齐心庄探槽古地震事件分析[J]. 地震地质, 2000, 22(4): 413-422. JIANG Wa-li, HOU Zhi-hua, XIAO Zhen-min, et al. Study on paleoearthquakes of Qixinzhuang trench at the Xiadian fault, Beijing plain[J]. Seismology and Geology, 2000, 22(4): 413-422 (in Chinese). [4] 徐锡伟, 计凤桔, 于贵华, 等. 用钻孔地层剖面记录恢复古地震序列: 河北夏垫断裂古地震研究[J]. 地震地质, 2000, 22(1): 9-19. XU Xi-wei, JI Feng-ju, YU Gui-hua, et al. Reconstruction of paleoearthquake sequence using stratigraphic records from drill logs: A study at the Xiadian fault, Beijing[J]. Seismology and Geology, 2000, 22(1): 9-19 (in Chinese). [5] 张先康, 赵金仁, 刘国华, 等. 三河—平谷8.0级大震区震源细结构的深地震反射探测研究[J]. 中国地震, 2002, 18(4): 326-336. ZHANG Xian-kang, ZHAO Jin-ren, LIU Guo-hua, et al. Study on fine crustal structure of the Sanhe-Pinggu earthquake (M8.0) region by deep seismic reflection profiling[J]. Earthquake Research in China, 2002, 18(4): 326-336 (in Chinese). [6] 李梁, 张世红, 蔡向民, 等. 北京市平原区夏垫断裂活动性的磁学研究[A]. 中国地球物理学会. 中国地球物理学会第二十七届年会论文集[C]. 安徽: 中国地球物理学会, 2011. LI Liang, ZHANG Shi-hong, CAI Xiang-min, et al. Magnetic investigation on activity of the Xiadian fault in the Beijing plain[A]. The 27th Symposium of Chinese Geophysical Society[C]. Anhui: Chinese Geophysical Society, 2011 (in Chinese). [7] 杨晓平, 曹景虎, 陈献程. 夏垫活动断裂两盘岩心氧化铁变化[J]. 地震地质, 2012, 34(4): 659-671. YANG Xiao-ping, CAO Jing-hu, CHEN Xian-cheng. The iron oxide changes in drilling cores from the two walls of Xiadian active fault[J]. Seismology and Geology, 2012, 34(4): 659-671 (in Chinese). [8] 王雷, 沈军, 林玲玲, 等. 北京平原区夏垫断裂的多源遥感影像特征[J]. 防灾科技学院学报, 2014, 16(4): 33-39. WANG Lei, SHEN Jun, LIN Ling-ling, et al. Characteristic of multiple remote sensing images of Xiadian fault, Beijing plain[J]. Journal of Institute of Disaster Prevention, 2014, 16(4): 33-39 (in Chinese). [9] 陆丽娜, 李静, 沈军, 等. 夏垫活动断层土壤氡地球化学特征[J]. 震灾防御技术, 2016, 11(4): 736-746. LU Li-na, LI Jing, SHEN Jun, et al. Geochemical characteristics of soil radon in the Xiadian activefault[J]. Technology for Earthquake Disaster Prevention, 2016, 11(4): 736-746 (in Chinese). [10] 陆丽娜, 杨明, 李静, 等. 土壤气汞探测在夏垫断裂带的应用研究[J]. 地质与勘探, 2018, 54(1): 112-120. LU Li-na, YANG Ming, LI Jing, et al. The application of soil-gas mercury detection to the Xiadian fault zone[J]. Geology and Exploration, 2018, 54(1): 112-120 (in Chinese). [11] Meyers R A. Encyclopedia of Complexity and System Science[M]. New York: SpringerScience+Business Media, LLC, 2009. [12] Roeloffs Evelyn A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes[J]. Journal of Geophysical Research, 1998, 103(B1): 869-889. [13] David R. Montgomery, Manga M. Streamflow and water well responses to earthquakes[J]. Science, 2003, 300(27): 2047-2049. [14] 万永魁, 沈军, 于晓辉, 等. 北京平原区夏垫活动断裂滑动速率及古地震复发间隔[J]. 防灾科技学院学报, 2014, 16(3): 38-45. WAN Yong-kui, SHEN Jun, YU Xiao-hui, et al. The slipping rates and ancient earthquake recurrence interval at Xiadian fault, Beijing Plain[J]. Journal of Institute of Disaster Prevention, 2014, 16(3): 38-45 (in Chinese). [15] 韩晓昆, 李营, 杜建国, 等. 夏垫断裂中南段土壤气体地球化学特征[J]. 物探与化探, 2013, 37(6): 976-982. HAN Xiao-kun, LI Ying, DU Jian-guo, et al. Geochemical characteristics of soil gas in the central south segment of Xiadian fault[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 976- 982 (in Chinese). [16] 高战武. 张家口—蓬莱断裂带地震地质特征研究[D]. 北京: 中国地震局地质研究所, 2001. GAO Zhan-wu. A study on characteristics of earthquake geology of the Zhangjiakou-Penglai fault zone[D]. Beijing: Institute of Geology, China Earthquake Administration, 2001 (in Chinese). [17] 韩孔艳, 赵健. 赵各庄地震观测井观测现状分析及改造方案探讨[J]. 煤炭与化工, 2016, 39(7): 129-132. HAN Kong-yan, ZHAO Jian. Analysis on Zhaogezhuang seismic monitoring well and discussion on the well improvement plan[J]. Coal and Chemical industry, 2016, 39(7): 129-132 (in Chinese). [18] 北京市地震局. 北京市地震监测志[M]. 北京: 地震出版社, 2006. Beijing Earthquake Agency. Beijing seismological monitoring records[M]. Beijing: Seismological Press, 2006 (in Chinese). [19] 车用太, 刘喜兰, 姚宝树, 等. 首都圈地区井水温度的动态类型及其成因分析[J]. 地震地质, 2003, 25(3): 403-420. CHE Yong-tai, LIU Xi-lan, YAO Bao-shu, et al. Well water temperture behaviors in capital circle and their formation mechanism[J]. Seismology and Geology, 2003, 25(3): 403-420 (in Chinese). [20] 宋洋, 谷洪彪, 李海君, 等. 断裂两盘井水位同震响应特征对比分析以北京八宝山断裂带中段大灰厂两观测井为例[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1815-1822. SONG Yang, GU Hong-biao, LI Hai-jun, et al. Comparison analysis of co-seismic response characteristics of groundwater level at two sides of fault in Beijing[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6): 1815-1822 (in Chinese). [21] 陈运泰, 刘瑞丰. 地震的震级[J]. 地震地磁观测与研究, 2004, 25(6): 1-12. CHEN Yun-tai, LIU Rui-feng. Earthquake Magnitude[J]. Seismological and Geomagnetic Observation and Research, 2004, 25(6): 1-12 (in Chinese). [22] Richter C F, Gutenberg B. Magnitude and energy of earthquakes[J]. Annals of Geophysics, 1956, 9(1): 1-15. [23] 郭履灿. 华北地区的地方性震级ML和面波震级MS经验关系[C]. 全国地震工作会议, 1971. GUO Lv-can. Empirical relationship between local magnitude ML and surface magnitude MS in northChina[J]. National conference on seismology work, 1971 (in Chinese). [24] 缪阿丽, 张艺, 叶碧文, 等. 江苏井网水温水位对几次大地震的同震响应特征及机理分析[J]. 地震, 2014, 34(4): 78-87. MIAO A-li, ZHANG Yi, YE Bi-wen, et al. Feature and mechanism of co-seismic responses of Jiangsu groundwater level and temperature to several strong earthquakes[J]. Earthquake, 2014, 34(4): 78-87 (in Chinese). [25] 巩浩波, 郭卫英, 李光科, 等. 重庆井网水位水温同震响应特征分析[J]. 震灾防御技术, 2015, 10(S1): 794-804. GONG Hao-bo, GUO Wei-ying, LI Guang-ke, et al. Characteristics of coseismic responses groundwater level and temperature of Chongqing Well-Net[J]. Technology for Earthquake Disaster Prevention, 2015, 10(S1): 794-804 (in Chinese). [26] 李利波, 姚休义, 李智蓉, 等. 云南地区水位、 水温对尼泊尔MS8.1地震的响应特征研究[J]. 地震工程学报, 2017, 39(4): 677-685. LI Li-bo, YAO Xiu-yi, LI Zhi-rong, et al. Co-seismic response of well water level and temperature in Yunan area to the Nepal MS8.1 earthquake in 2015[J]. China Earthquake Engineering Journal, 2017, 39(4): 677-685 (in Chinese). [27] 秦双龙, 廖丽霞, 洪旭瑜, 等. 福建永春桃东井水位同震响应特征及记震能力分析[J]. 华南地震, 2017, 37(S1): 126-132. QIN Shuang-long, LIAO Li-xia, HONG Xu-yu, et al. Analysis on coseismic response characteristics and seismic recording capacity of water level of Taodong well in Yongchun, Fujian[J]. South China Journal of Seismology, 2017, 37(S1): 126-132 (in Chinese). [28] Ma Y C, Huang F Q. Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland[J]. Tectonophysics, 2017, 694: 57-68. [29] 牛安福, 张晶, 吉平. 强地震引起的同震形变响应[J]. 内陆地震, 2005, 19(1): 1-7. NIU An-fu, ZHANG Jing, JI Ping. Coseismic deformation response of strong earthquake[J]. Inland Earthquake, 2005, 19(1): 1-7 (in Chinese). [30] 顾申宜, 刘阳, 张慧, 等. 海南琼海加积井水位对远大震的同震响应特征研究[J]. 中国地震, 2011, 27(1): 83-91. GU Shen-yi, LIU Yang, ZHANG Hui, et al. The characteristics analysis on co-seismic response of water level in the Jiaji well, Hainan[J]. Earthquake Research in China, 2011, 27(1): 83-91 (in Chinese). [31] 杨竹转, 邓志辉, 赵云旭, 等. 云南思茅大寨井水位同震阶变的初步研究[J]. 地震学报, 2005, 27(5): 569-574. YANG Zhu-zhuan, DENG Zhi-hui, ZHAO Yun-xu, et al. Preliminary study on coseismic steps of water level in Dazhai well, Simao city, Yunnan province[J]. Acta Seismologica Sinica, 2005, 27(5): 569-574 (in Chinese). [32] 陈大庆, 刘耀炜, 杨选辉, 等. 远场大震的水位、 水温同震响应及其机理研究[J]. 地震地质, 2007, 29(1): 122-132. CHEN Da-qing, LIU Yao-wei, YANG Xuan-hui, et al. Co-seismic water level, temperature responses of some wells to far-field strong earthquakes and their mechanisms[J]. Seismology and Geology, 2007, 29(1): 122-132 (in Chinese). [33] 王芳, 黄辅琼. 安溪一号井水位的同震阶变响应特征[J]. 地震地磁观测与研究, 2012, 33(Z2): 169-177. WANG Fang, HUANG Fu-qiong. Co-seismic water level steps of the Anxi-1 well, Fujian province and their relation to rainfall conditions[J]. Seismological and Geomagnetic Observation and Research, 2012, 33(Z2): 169-177 (in Chinese). [34] 李俊超, 康波, 陈星星, 等. 丹江口井网流体动态与尼泊尔MS8.1地震同震响应分析[J]. 大地测量与地球动力学, 2016, 36(11): 1025-1030. LI Jun-chao, KANG Bo, CHEN Xing-xing, et al. Fluid dynamic and seismic response analysis of Nepal M8.1 Earthquake with the Danjiangkou Well Network[J]. Journal of Geodesy and Geodynamics, 2016, 36(11): 1025-1030 (in Chinese). [35] 向阳, 孙小龙, 高小其, 等. 新10井水位对九寨沟MS 7.0、 精河MS6.6地震同震响应[J]. 中国地震, 2017, 33(4): 563-574. XIANG Yang, SUN Xiao-long, GAO Xiao-qi, et al. Co-seismic response of water level caused by the Jiuzhaigou MS7.0 earthquake and the Jinghe MS6.6 earthquake in Xin well 10, Xinjiang[J]. Earthquake Research in China, 2017, 33(4): 563-574 (in Chinese). [36] 周志华, 黄辅琼, 马玉川. 中国大陆井水位观测网对甘肃岷县漳县6.6级地震同震响应特征分析[J]. 地震工程学报, 2013, 35(3): 529-534. ZHOU Zhi-hua, HUANG Fu-qiong, MA Yu-chuan. Coseismic changes of water level caused by the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 2013, 35(3): 529-534 (in Chinese). [37] 张世民, 方炜, 舒优良, 等. 汶川地震前周至深井观测数据的异常特征[J]. 防灾科技学院学报, 2009, 11(1): 20-27. ZHANG Shi-min, FANG Wei, SHU You-liang, et al. Study on the anomaly characteristics of observation data in Zhouzhi deep borehole before Wenchuan earthquake[J]. Journal of Institute of Disaster-Prevention Science and Technology, 2009, 11(1): 20-27 (in Chinese). [38] 史浙明. 地下水位同震响应特征及机理研究[D]. 北京: 中国地质大学, 2015. SHI Zhe-ming. Characteristic and mechanism of co-seismic hydrological response induced by earthquakes[D]. Beijing: China University of Geosciences, 2015 (in Chinese). [39] Brodsky, Emily E. A mechanism for sustained groundwater pressure changes induced by distant earthquake[J]. Journal of Geophysical Research, 2003, 108(B8): 1-10. [40] Manga, Michael, Beresnev, et al. Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms[J]. Reviews of Geophysics, 2012, 50(2): 1-24. [41] Shi Z, Wang G. Aquifers switched from confined to semiconfined by earthquakes[J]. Geophysical Research Letters, 2016, 43(11): 11166-11172. [42] Sun X, Wang G, Yang X. Coseismic response of water level in Changping well, China, to the MW9.0 Tohoku earthquake[J]. Journal of Hydrology, 2015, 531: 1028-1039. [43] Liao X, Wang C, Liu C. Disruption of groundwater systems by earthquakes[J]. Geophysical Research Letters, 2015, 42(22): 9758-9763. [44] Manga M, Rowland J C. Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes[J]. Geofluids, 2009, 9(3): 237-250. [45] Rojstaczer S, Wolf S, Michel R. Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes[J]. Nature, 1995, 373(6511): 237-239. [46] Wang C Y, Manga M. New streams and springs after the 2014 MW6.0 South Napa earthquake[J]. Nature communications, 2015, 6: 1-6. [47] 李颖, 殷伟伟, 胡玉良, 等.山西洪洞井水位对远场大震的响应特征分析[J]. 中国地震, 2018, 34(1): 93-103. LI Ying, YING Wei-wei, HU Yu-liang, et al. The characteristics analysis on co-seismic response of water level to remote strong earthquake in the Hongtong well, Shanxi[J]. Earthquake Research in China, 2018, 34(1): 93-103 (in Chinese). [48] 王博, 刘耀炜, 孙小龙. 地下流体与断裂活动关系的研究综述[J]. 地震研究, 2008, 31(3): 296-302. WANG Bo, LIU Yao-wei, SUN Xiao-long. Overview: Relationship between faulting and under-groundfluid[J]. Journal of Seismological Research, 2008, 31(3): 296-302 (in Chinese). [49] Candela T, Brodsky E E, Marone C, et al. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing[J]. Earth and Planetary Science Letters, 2014, 392: 279-291. [50] Claesson L, Skelton A, Graham C, et al. Hydrogeochemical changes before and after a major earthquake[J]. Geology, 2004, 32(8): 641-644. [51] Faoro I, Elsworth D, Marone C. Permeability evolution during dynamic stressing of dual permeability media[J]. Journal of Geophysical Research, 2012, 117(B01310): 1-10. [52] 陆明勇, 黄辅琼, 刘善华, 等. 地壳变形与地下水相互作用及其异常关系初探[J]. 地震, 2005, 25(1): 67-73. LU Ming-yong, HUANG Fu-qiong, LIU Shan-hua, et al. Discussion on mutual action between crustal deformation and underground water and its anomalous relation[J]. Earthquake, 2005, 25(1): 67-73 (in Chinese). [53] 黄辅琼, 陈颙, 白长清, 等. 八宝山断层的变形行为与降雨及地下水的关系[J]. 地震学报, 2005, 27(6): 637-646. HUANG Fu-qiong, CHEN Yong, BAI Chang-qing, et al. The correlation of deformation behavior with precipitation and groundwater of the Babaoshan fault in Beijing[J]. Acta Seismologica Sinica, 2005, 27(6): 637-646 (in Chinese). |