[1] Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. J. Geophys. Res., 2007, 112: B08416. [2] Liang S, Gan W, Shen C, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements[J]. J. Geophys. Res., Solid Earth, 2013, 118: 5722-5732. [3] Ge W P, Molnar P, Shen Z K, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophys. Res. Lett., 2015, 42: 5227-5235. [4] Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of western Tibet[J]. Science, 2004, 305(5681): 236-239. [5] Taylor M, Peltzer G. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. J. Geophys. Res., 2006, 111: B12402. [6] Bell M A, Elliott J R, Parsons B E. Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 MW7.6 earthquake[J]. Geophys. Res. Lett., 2011, 38: L24302. [7] Wang H, Wright T J. Satellite geodetic imaging reveals internal deformation of western Tibet[J]. Geophys. Res. Lett., 2012, 39: L07303. [8] Doin M P, Twardzik C, Ducret G, et al. InSAR measurement of the deformation around Siling Co Lake: Inferences on the lower crust viscosity in Central Tibet[J]. J. Geophys. Res., Solid Earth, 2015, 120: 5290-5310. [9] Zhu S, Xu C J, Wen Y M, et al. Interseismic deformation of the Altyn Tagh fault determined by interferometric synthetic aperture radar (InSAR) Measurements[J]. Remote Sensing, 2016, 8(3): 233. [10] Garthwaite M C, Wang H, Wright T J. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J. Geophys. Res., Solid Earth, 2013, 118: 5071-5083. [11] Ryder I, Wang H, Bie L, et al. Geodetic imaging of late postseismic lower crustal flow in Tibet[J]. Earth Planet Sci. Lett., 2014, 404: 136-143. [12] Salvi S, Stramondo S, Funning G J, et al. The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle[J]. Remote Sensing of Environment, 2012, 120(15): 164-174. [13] Yin A, Taylor M H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 2011, 123(9/10): 1798-1821. [14] Taylor M, Yin A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009, 5(3): 199-214. [15] Styron R, Taylor M, Okoronkwo K. Database of active structures from the Indo-Asian collision[J]. Eos Trans AGU, 2010, 91(20): 181-182. [16] Chen C W, Zebker H A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms[J]. Journal of the Optical Society of America A, 2000, 17(3): 401-414. [17] Tong X P, Schmidt D. Active movement of the Cascade landslide complex in Washington from a coherence-based InSAR time series method[J]. Remote Sensing of Environment, 2016, 186: 405-415. [18] Wdowinski S, Bock Y, Zhang J, et al. outhern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake[J]. J. Geophys. Res., 1997, S 102(B8): 18057-18070. [19] Dong D, Fang P, Bock Y, et al. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis, J. Geophys. Res., 2006, 111: B03405. [20] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5): 1476-1486. LI Shan-shan, LI Zhi-wei, HU Jun, et al. Investigation of the Seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm[J]. Chinese J. Geophys., 2013, 56(5): 1476-1486 (in Chinese). [21] 王敏, 沈正康, 董大南. 非构造形变对GPS连续站位置时间序列的影响和修正[J]. 地球物理学报, 2005, 48(5): 1045-1052. WANG Ming, SHEN Zheng-kang, DONG Da-nan. Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them[J]. Chinese Journal of Geophysics, 2005. 48(5): 1045-1052 (in Chinese). [22] 田云锋, 沈正康. GPS坐标时间序列中非构造噪声的剔除方法研究进展[J]. 地震学报, 2009, 31(1): 68-81. TIAN Yun-feng, SHEN Zheng-kang. Progress on reduction of non-tectonic noise in GPS position time series[J]. Acta Seismological Sinica, 2009, 31(1): 68-81 (in Chinese). [23] Ha G H, Wu Z H, Liu F. Late Quaternary vertical slip rates along the Southern Yadong-Gulu Rift, Southern Tibetan Plateau[J]. Tectonophysics, 2019, 755: 75-90. |