[1] 张希, 江在森, 王琪, 等. 青藏高原北部地区构造变形特征及与强震关系[J]. 地球物理学进展, 2004, 19(2): 363-371. [2] 张希, 江在森, 王双绪, 等. 川滇地区地壳水平运动的弹性块体边界负位错模型与强震地点预测[J]. 地震研究, 2005, 28(2): 119-124. [3] McCaffrey R. Block kinematics of the Pacific-North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data[J].J Geophys Res Sol Earth, 2005, 110(B7). [4] Platt J P, Becker T W. Where is the real transform boundary in California?[J]. Geochemistry Geophysics Geosystems, 2009, 11(6): 449-463. [5] Zeng Y, Shen Z K. A Fault-Based Model for Crustal Deformation, Fault Slip Rates, and Off-Fault Strain Rate in California[J]. Bull Seismol Soc Amer, 2016, 106(2). [6] Bird P, Liu Z. Seismic hazard inferred from tectonics: California[J]. Seismol Res Lett, 2007, 78(1): 37-48. [7] Parsons T. Tectonic stressing in California modeled from GPS observations[J]. J Geophys Res Sol Earth, 2006, 111(B3). [8] 刘峡. 华北地区现今地壳运动及形变动力学数值模拟[D]. 合肥: 中国科学技术大学, 2007. [9] 张晓亮, 师昭梦, 蒋锋云, 等. 海原—六盘山弧型断裂及其附近最新构造变形演化分析[J]. 大地测量与地球动力学, 2011, 31(3): 20-24. [10] 杨少敏, 游新兆, 杜瑞林, 等. 用双三次样条函数和GPS资料反演现今中国大陆构造形变场[J]. 大地测量与地球动力学, 2002, (1): 68-75. [11] 江在森, 马宗晋, 张希, 等. GPS初步结果揭示的中国大陆水平应变场与构造变形[J]. 地球物理学报, 2003, 46(3): 352-358. [12] 江在森, 刘经南. 应用最小二乘配置建立地壳运动速度场与应变场的方法[J]. 地球物理学报, 2010, 53(5): 1109-1117. [13] 武艳强, 江在森, 杨国华, 等. 利用最小二乘配置在球面上整体解算GPS应变场的方法及应用[J]. 地球物理学报, 2009a, 52(7): 1707-1714. [14] 武艳强, 江在森, 杨国华, 等. 利用多面函数整体求解GPS应变场的方法及应用[J]. 武汉大学学报信息科学版, 2009, 34(9): 1085-1089. [15] 武艳强, 江在森, 杨国华, 等. 用球谐函数整体解算GPS应变场方法研究[J]. 大地测量与地球动力学, 2009, 29(6): 68-73. [16] Wu Y, Jiang Z, Zhao J, et al. Crustal deformation before the 2008 Wenchuan MS8.0 earthquake studied using GPS data[J]. Journal of Geodynamics, 2015, 85: 11-23. [17] 苏小宁, 孟国杰, 王振. 基于多尺度球面小波解算GPS应变场的方法及应用[J]. 地球物理学报, 2016, 59(5): 1585-1595. [18] Tape C, Musé P, Simons M, et al. Multiscale estimation of GPS velocity fields[J]. Geophys J Inter, 2009, 179(2): 945-971. [19] 李延兴, 李智, 张静华, 等. 中国大陆及周边地区的水平应变场[J]. 地球物理学报, 2004, 47(2): 222-231. [20] 石耀霖, 朱守彪. 用GPS位移资料计算应变方法的讨论[J]. 大地测量与地球动力学, 2006, 26(1): 1-8. [21] Hammond W C, Thatcher W. Contemporary tectonic deformation of the Basin and Range province, western United States: 10 years of observation with the Global Positioning System[J]. J Geophys Res Sol Earth, 2004, 109(B8): B08403. [22] 朱守彪, 蔡永恩, 石耀霖. 青藏高原及邻区现今地应变率场的计算及其结果的地球动力学意义[J]. 地球物理学报, 2005, 48(5): 1053-1061. [23] 陈小斌. 中国陆地现今水平形变状况及其驱动机制[J]. 中国科学: 地球科学, 2007, 37(8): 1056-1064. [24] Shen Z K, Jackson D D, Ge B X. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements[J]. J Geophys Res Sol Earth, 1996, 1012(12): 27957-27980. [25] Shen Z K, Wang M, Zeng Y, et al. Optimal Interpolation of Spatially Discretized Geodetic Data[J]. Bull Seismol Soc Amer, 2015, 105(4): 2117-2127 [26] Freed A M, Ali S T, Bürgmann R. Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes[J]. Geophys J Inter, 2007, 169(3): 1164-1179. [27] Hackl M, Malservisi R, Wdowinski S. Strain rate patterns from dense GPS networks[J]. Natural Hazards & Earth System Sciences, 2009, 9(4): 1177-1187. [28] Kreemer C, Hammond W C, Blewitt G, et al. A Geodetic Strain Rate Model for the Pacific-North American Plate Boundary, western United States[J]. Egu General Assembly, 2012, 14: 6785. [29] Kreemer C, Holt W E, Haines A J. An integrated global model of present-day plate motions and plate boundary deformation[J]. Geophysical Journal of the Royal Astronomical Society, 2003, 154(1): 8-34. [30] 刘晓霞, 江在森, 武艳强. Kriging方法在GPS速度场网格化和应变率场计算中的适用性[J]. 武汉大学学报(信息科学版), 2014, 39(4): 457-461. [31] Wu Y, Jiang Z, Yang G, et al. Comparison of GPS strain rate computing methods and their reliability[J]. Geophys J Inter, 2011, 185(2): 703-717. [32] Savage J C, Gan W, Svarc J L. Strain accumulation and rotation in the Eastern California Shear Zone[J]. Journal of Geophysical Research Atmospheres, 2001, 106(B10): 21995-22008. [33] Meade, Brendan J . Block models of crustal motion in southern California constrained by GPS measurements[J]. J Geophys Res, 2005, 110(B3): B03403. [34] Meade, Brendan J. Block Modeling with Connected Fault-Network Geometries and a Linear Elastic Coupling Estimator in Spherical Coordinates[J]. Bull Seismol Soc Amer, 99(6): 3124-3139. [35] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Amer, 1985, 92(2): 1018-1040. [36] Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Amer, 1992, 92(2): 1018-1040. [37] Smith B, Sandwell D. Coulomb stress accumulation along the San Andreas Fault system[J]. J Geophys Res Sol Earth, 2003, 108(B6): 2296. [38] Smith B, Sandwell D. A three-dimensional semianalytic viscoelastic model for time-dependent analyses of the earthquake cycle[J]. Journal of Geophysical Research Atmospheres, 2004, 109(B12): 10-1029. [39] 崔笃信, 王庆良, 胡亚轩, 等. 用GPS数据反演海原断裂带断层滑动速率和闭锁深度[J]. 地震学报, 2009, 31(5): 516-525. [40] Bird P. Long-term fault slip rates, distributed deformation rates, and forecast of seismicity in the western United States from joint fitting of community geologic, geodetic, and stress direction data sets[J]. Journal of Geophysical Research Atmospheres, 2009, 114(B11): 292-310. [41] 顾国华, 孙汉荣, 孙惠娟, 等. 利用GPS地形变资料在大地坐标系中计算应变[J]. 大地测量与地球动力学, 1998, (3): 26-31. [42] 江在森, 张希. 地形变资料求解应变值的尺度相对性问题研究[J]. 地震学报, 2000, 22(4): 352-359. [43] Wei M, Sandwell D, Smith-Konter B. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation[J]. Advances in Space Research, 2010, 46(2): 236-249. |