地震 ›› 2024, Vol. 44 ›› Issue (4): 62-81.doi: 10.12196/j.issn.1000-3274.2024.04.005
刘红, 张学民, 杨娜
收稿日期:
2024-04-22
修回日期:
2024-07-24
出版日期:
2024-10-31
发布日期:
2024-12-16
通讯作者:
张学民, 研究员。 E-mail: zhangxm96@126.com
作者简介:
刘红(1999-), 女, 贵州毕节人, 在读硕士研究生, 主要从事地震电离层研究。
基金资助:
LIU Hong, ZHANG Xue-min, YANG Na
Received:
2024-04-22
Revised:
2024-07-24
Online:
2024-10-31
Published:
2024-12-16
摘要: 电离层异常是地震短临预报过程的重要参考, 目前已经积累了丰富的研究成果。 与地震电离层异常形成机制相关的LAI耦合模型也得到了发展, 其中声重波途径受到了广泛关注。 本研究基于中国大陆构造环境监测网络(CMONOC)GNSS观测站提取到的北斗导航卫星系统(BDS)电离层总电子含量(TEC)数据, 通过小波变换等分析方法, 对2023年12月18日甘肃积石山MW6.0地震前14 h至震后2 h内TEC扰动的频谱特征和时空变化进行了探究, 并与背景扰动信号和外源信号进行了对比。 结果表明, 临震前声重波扰动信号主要表现为向外辐散的弧状结构, 反向定位结果表明该扰动弧源点接近震源位置。 该扰动信号同时还受到了MSTIDs背景信号的载波作用和两个外源信号的干扰。 最后, 讨论了地表声重波信号的激发起源机制, 指出地震孕育过程与声重波的联系仍需进一步验证和探究。
中图分类号:
刘红, 张学民, 杨娜. 2023年积石山MW6.0地震前电离层TEC与声重波耦合现象[J]. 地震, 2024, 44(4): 62-81.
LIU Hong, ZHANG Xue-min, YANG Na. Phenomenon of Ionospheric TEC Coupled with Acoustic-gravity Waves Preceding Jishishan MW6.0 Earthquake in 2023[J]. EARTHQUAKE, 2024, 44(4): 62-81.
[1] Moore G W. Magnetic disturbances preceding the 1964 Alaska earthquake[J]. Nature, 1964, 203(4944): 508-509. [2] Fatkullin M N, Zelenova T I, Legenka A D. On the ionospheric effects of asthenospheric earthquakes[J]. Physics of the Earth and Planetary Interiors, 1989, 57(1-2): 82-85. [3] Pulinets S. Ionospheric precursors of earthquakes; recent advances in theory and practical applications[J]. Terrestrial Atmospheric and Oceanic Sciences, 2004, 15(3): 413-435. [4] Singh O P, Chauhan V, Singh V, et al. Anomalous variation in total electron content (TEC) associated with earthquakes in India during September 2006—November 2007[J]. Physics and Chemistry of the Earth, 2009, 34(6-7): 479-484. [5] Liu Z Z. A new approach for cycle slip detection and fix using single GPS receiver’s single satellite dual frequency data containing arbitrarily large pseudorange errors[J]. The Journal of Global Positioning Systems, 2018, 16(1): 5. [6] Sardón E, Rius A, Zarraoa N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations[J]. Radio Science, 1994, 29(3): 577-586. [7] Liu J Y, Chen Y I, Chuo Y J, et al. Variations of ionospheric total electron content during the Chi-Chi earthquake[J]. Geophysical Research Letters, 2001, 28(7): 1383-1386. [8] Liu J Y, Chen Y I, Chen C H, et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 MW7.9 Wenchuan earthquake[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A4): 2008JA013698. [9] Heki K, Nakatani M, Zhan W. Ionospheric changes immediately before the 2008 Wenchuan earthquake[J]. Advances in Space Research, 2024, 73(9): 4539-4545. [10] Heki K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(17): L17312. [11] Le H, Liu L, Liu J Y, et al. The ionospheric anomalies prior to the M9.0 Tohoku-Oki earthquake[J]. Journal of Asian Earth Sciences, 2013, 62: 476-484. [12] Dong L, Zhang X, Du X. Analysis of ionospheric perturbations possibly related to Yangbi MS6.4 and Maduo MS7.4 earthquakes on 21 May 2021 in China using GPS TEC and GIM TEC data[J]. Atmosphere, 2022, 13(10): 1725. [13] Liu J Y, Chuo Y J, Shan S J, et al. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. Annales Geophysicae, 2004, 22(5): 1585-1593. [14] Le H, Liu J Y, Liu L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002—2010[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A2): A02303. [15] Pulinets S A, Ouzounov D P, Karelin A V, et al. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system[J]. Geomagnetism and Aeronomy, 2015, 55(4): 521-538. [16] Pulinets S, Ouzounov D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 371-382. [17] Sorokin V M, Yaschenko A K, Hayakawa M. Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(11): 1260-1268. [18] Hayakawa M, Kasahara Y, Nakamura T, et al. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations[J]. Journal of Atmospheric Electricity, 2011, 31(2): 129-140. [19] Miyaki K, Hayakawa M, Molchanov O A. The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data[J]. Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 2002: 229-232. [20] Molchanov O A, Hayakawa M, Miyaki K. VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling[J]. Advances in Polar Upper Atmosphere Research, 2001, 15: 146-158. [21] Muto F, Kasahara Y, Hobara Y, et al. Further study on the role of atmospheric gravity waves on the seismo-ionospheric perturbations as detected by subionospheric VLF/LF propagation[J]. Natural Hazards and Earth System Sciences, 2009, 9(4): 1111-1118. [22] Singh D, Singh B, Pundhir D. Ionospheric perturbations due to earthquakes as determined from VLF and GPS-TEC data analysis at Agra, India[J]. Advances in Space Research, 2018, 61(7): 1952-1965. [23] Freund F. Time-resolved study of charge generation and propagation in igneous rocks[J]. Journal of Geophysical Research: Biogeosciences, 2000, 105(B5): 11001-11019. [24] Freund F. Pre-earthquake signals: Underlying physical processes[J]. Journal of Asian Earth Sciences, 2011, 41(4-5): 383-400. [25] Liperovsky V A, Pokhotelov O A, Meister C V, et al. Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes[J]. Geomagnetism and Aeronomy, 2008, 48(6): 795-806. [26] Oyama K I, Devi M, Ryu K, et al. Modifications of the ionosphere prior to large earthquakes: Report from the ionosphere precursor study group[J]. Geoscience Letters, 2016, 3(1): 6. [27] Korepanov V, Hayakawa M, Yampolski Y, et al. AGW as a seismo-ionospheric coupling responsible agent[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2009, 34(6-7): 485-495. [28] Nakamura T, Korepanov V, Kasahara Y, et al. An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations[J]. Journal of Atmospheric Electricity, 2013, 33(1): 53-68. [29] Hayakawa M, Ohta K, Maekawa S, et al. Electromagnetic precursors to the 2004 mid Niigata Prefecture earthquake[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2006, 31(4-9): 356-364. [30] Yang S S, Asano T, Hayakawa M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(2): 1410-1425. [31] Phanikumar D V, Maurya A K, Kumar K N, et al. Anomalous variations of VLF sub-ionospheric signal and mesospheric ozone prior to 2015 Gorkha Nepal earthquake[J]. Scientific Reports, 2018, 8(1): 9381. [32] 郭祥云, 韩立波, 张旭, 等. 2023年12月18日甘肃积石山6.2级地震震源参数和破裂特征[J]. 地震科学进展, 2024, 54(1): 75-85. GUO Xiang-yun, HAN Li-bo, ZHANG Xu, et al. Source parameters and rupture characteristics of the M6.2 Jishishan earthquake in Gansu Province on December 18, 2023[J]. Progress in Earthquake Sciences, 2024(1): 75-85 (in Chinese). [33] Wang M, Shen Z K. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. [34] 袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102. YUAN Dao-yang, ZHANG Pei-zhen, LEI Zhong-sheng, et al. A preliminary study on the new activity features of the Lajishan Mountain fault zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102 (in Chinese). [35] Dobrovolsky I P, Zubkov S I, Miachkin V I. Estimation of the size of earthquake preparation zones[J]. Pure and Applied Geophysics, 1979, 117(5): 1025-1044. [36] 袁道阳. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所, 2003. YUAN Dao-yang. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan Plateau since the Late Cenozoic Time[D]. Beijing: Institute of Geology, China Earthquake Administration, 2003 (in Chinese). [37] 李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897. LI Zhen-hong, HAN Bing-quan, LIU Zhen-jiang, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897 (in Chinese). [38] Yang Z G, Liu J, Zhang Y Y, et al. Rapid report of source parameters of 2023 M6.2 Jishishan, Gansu earthquake sequence[J]. Earth and Planetary Physics, 2024, 8(2): 436-443. [39] 高原, 李心怡, 李抒予, 等. 2023年12月18日积石山6.2级地震的深浅变形构造分析[J]. 地震, 2024, 44(1): 160-166. GAO Yuan, LI Xin-yi, LI Shu-yu, et al. Deep and shallow deformation tectonics of Jishishan MS6.2 earthquake on 18 December 2023 in China[J]. Earthquake, 2024, 44(1): 160-166 (in Chinese). [40] Hatch R R. The synergism of GPS code and carrier measurements[J]. Proceedings of the 3rd International Geodetic Symposium on Satellite Doppler Positioning, 1982, 1: 1213-1231. [41] Ciraolo L, Azpilicueta F, Brunini C, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS[J]. Journal of Geodesy, 2007, 81(2): 111-120. [42] Dach R, Lutz S, Walser P, et al. Bernese GNSS software version 5.2[M]. Bern: Astronomical Institute, University of Bern, 2015. [43] Guo J F, Ou J K, Yuan Y B, et al. Optimal carrier-smoothed-code algorithm for dual-frequency GPS data[J]. Progress in Natural Science, 2008, 18(5): 591-594. [44] Melbourne W G. The case for ranging in GPS-based geodetic systems[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland: US Department of Commerce, 1985: 373-386. [45] Wübbena, G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland, USA: US Department of Commerce, 1985: 403-412. [46] Liu Z Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver[J]. Journal of Geodesy, 2011, 85(3): 171-183. [47] Lanyi G E, Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations[J]. Radio Science, 1988, 23(4): 483-492. [48] Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical Chemistry, 1964, 36(8): 1627-1639. [49] Liu Y G, San Liang X, Weisberg R H. Rectification of the bias in the wavelet power spectrum[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(12): 2093-2102. [50] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78. [51] Schmitz-Hübsch H, Schuh H. Seasonal and short-period fluctuations of Earth rotation investigated by wavelet analysis[M]∥Tregoning P, Rizos C (eds) Geodesy-the Challenge of the 3rd Millennium Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 125-134. [52] Torrence C, Webster P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate, 1999, 12(8): 2679-2690. [53] Kestin T S, Karoly D J, Yano J I, et al. Time-frequency variability of ENSO and stochastic simulations[J]. Journal of Climate, 1998, 11(9): 2258-2272. [54] Farge M. Wavelet transforms and their applications to turbulence[J]. Annual Review of Fluid Mechanics, 1992, 24(1): 395-457. [55] Cheng P H, Lin C, Otsuka Y, et al. Statistical study of medium-scale traveling ionospheric disturbances in low-latitude ionosphere using an automatic algorithm[J]. Earth, Planets and Space, 2021, 73(1): 105. [56] Otsuka Y, Shinbori A, Tsugawa T, et al. Solar activity dependence of medium-scale traveling ionospheric disturbances using GPS receivers in Japan[J]. Earth, Planets and Space, 2021, 73(1): 22. [57] Artru J, Ducic V, Kanamori H, et al. Ionospheric detection of gravity waves induced by tsunamis[J]. Geophysical Journal International, 2005, 160(3): 840-848. [58] Chakraborty S, Sasmal S, Chakrabarti S K, et al. Observational signatures of unusual outgoing longwave radiation (OLR) and atmospheric gravity waves (AGW) as precursory effects of May 2015 Nepal earthquakes[J]. Journal of Geodynamics, 2018, 113: 43-51. [59] Hines C O. Internal atmospheric gravity waves at ionospheric heights[J]. Canadian Journal of Physics, 1960, 38(11): 1441-1481. [60] Artru J, Farges T, Lognonné P. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modelling: Propagation of seismic acoustic waves[J]. Geophysical Journal International, 2004, 158(3): 1067-1077. [61] Bolt B A. Seismic air waves from the great 1964 Alaskan earthquake[J]. Nature, 1964, 202(4937): 1095-1096. [62] Davies K, Baker D M. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964[J]. Journal of Geophysical Research, 1965, 70(9): 2251-2253. [63] Lognonné P, Clévédé E, Kanamori H. Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere[J]. Geophysical Journal International, 1998, 135(2): 388-406. [64] Astafyeva E, Lognonné P, Rolland L. First ionospheric images of the seismic fault slip on the example of the Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38(22): L22104. [65] Rolland L M, Lognonné P, Astafyeva E, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth, Planets and Space, 2011, 63(7): 853-857. [66] Yang Y M, Meng X, Komjathy A, et al. Tohoku-Oki earthquake caused major ionospheric disturbances at 450 km altitude over Alaska[J]. Radio Science, 2014, 49(12): 1206-1213. [67] Bouchon M, Karabulut H, Aktar M, et al. Extended nucleation of the 1999 MW7.6 Izmit earthquake[J]. Science, 2011, 331(6019): 877-880. [68] Bedford J R, Moreno M, Deng Z, et al. Months-long thousand-kilometre-scale wobbling before great subduction earthquakes[J]. Nature, 2020, 580(7805): 628-635. [69] Bouchon M, Durand V, Marsan D, et al. The long precursory phase of most large interplate earthquakes[J]. Nature Geoscience, 2013, 6(4): 299-302. [70] Endo T, Kasahara Y, Hobara Y, et al. A note on the correlation of seismo-ionospheric perturbations with ground motions as deduced from F-net seismic observations[J]. Journal of Atmospheric Electricity, 2013, 33(1): 69-76. [71] Hayakawa M, Kasahara Y, Nakamura T, et al. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09305. [72] Estey L H, Meertens C M. TEQC: The multi-purpose toolkit for GPS/GLONASS data[J]. GPS Solutions, 1999, 3(1): 42-49. [73] Nischan T. GFZRNX-RINEX GNSS data conversion and manipulation toolbox[EB/OL]. GFZ Data Services. (2016)[2023-09-14]. https:∥dataservices.gfz-potsdam.de/panmetaworks/showshort.php?id=escidoc:1577894. |
[1] | 天娇, 朱瑞杰, 琚长辉, 田雷, 周晓成. 温泉水化学变化在地震监测预测中的研究进展[J]. 地震, 2024, 44(4): 97-115. |
[2] | 石宏宇, 王万丽, 周晓成, 颜玉聪, 李鹏飞, 姜莉, 陈志. 四川石棉公益海温泉水文地球化学特征[J]. 地震, 2021, 41(1): 93-115. |
[3] | 薛红盼, 张乐, 陆丽娜, 李静, 卫清, 刘青. 夏垫断裂带地震地下流体的同震响应研究[J]. 地震, 2020, 40(1): 184-202. |
[4] | 陆明勇, 房宗绯, 赵丽葵. 汶川8.0级地震前地下流体长趋势变化特征讨论[J]. 地震, 2010, 30(1): 61-72. |
[5] | 邱泽华, 阚宝祥, 唐磊. 四分量钻孔应变观测资料的换算和使用[J]. 地震, 2009, 29(4): 83-89. |
[6] | 王卫东, 林晨, 张永志, 吴芳, 佘天社. 区域地震活动与西安地区地下热水活动相关性的研究[J]. 地震, 2009, 29(2): 118-122. |
[7] | 张立, 赵洪声, 陈静, 刘耀炜. 云南强震前震中区水位变化特征分析[J]. 地震, 2008, 28(4): 52-58. |
[8] | 黄建平, 丁鉴海, 余素荣, 申旭辉, 杜则澄. 地磁场大尺度变化特征分析[J]. 地震, 2008, 28(3): 49-54. |
[9] | 李志雄, 朱航, 刘杰, 曾钢平, 丘学林. 基于EMD的中国大陆强震活动特征分析[J]. 地震, 2007, 27(3): 57-62. |
[10] | 杜学彬, 钱家栋, 陈军营, 康好林, 马占虎, 谭大诚, 叶青, 李宁. 地电阻率台址条件研究[J]. 地震, 2007, 27(增刊): 19-27. |
[11] | 王兰炜, 赵家骝, 王子影, 王燕琼, 韩润泉, 徐学恭. 电磁扰动观测试验及数据初步分析[J]. 地震, 2007, 27(增刊): 96-102. |
[12] | 席继楼, 邱颖, 张颖, 刘超, 韩润泉, 徐学恭, 张建新, 赵金波. 地电场试验台阵观测及数据分析研究[J]. 地震, 2007, 27(增刊): 112-120. |
[13] | 杜学彬, 叶青, 赵杰, 王娜, 薛志明, 史红军, 马占虎, 李宁. 地电场日变化研究[J]. 地震, 2007, 27(增刊): 121-130. |
[14] | 马钦忠, 席继楼, 蔡晋安, 汪育新. 天然场源对地电场观测中的贡献研究[J]. 地震, 2007, 27(增刊): 131-138. |
[15] | 郑兆苾, 何康, 汪雪泉, 陶月潮. 地电场的基本特征初探[J]. 地震, 2007, 27(增刊): 139-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||