[1] Dillinger W H, Harding S T, Pope A J. Determining maximum likelihood body wave focal plane solutions[J]. Geophysical Journal International, 1972, 30(3): 315-329. [2] Ebel J E, Bonjer K P. Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution[J]. Geophysical Journal International, 1990, 101(1): 133-146. [3] Hauksson E, Yang W, Shearer P M. Waveform relocated earthquake catalog for Southern California (1981 to June 2011)[J]. Bulletin of the Seismological Society of America, 2012, 102(5): 2239-2244. [4] Ekström G, Nettles M, Dziewoński A M. The global CMT project 2004—2010: Centroid-moment tensors for 13017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200-201: 1-9. [5] Romanowicz B. Global mantle tomography: Progress status in the past 10 years[J]. Annual Review of Earth and Planetary Sciences, 2003, 31: 303-328. [6] Tape C, Liu Q Y, Maggi A, et al. Adjoint tomography of the southern California crust[J]. Science, 2009, 325(5943): 988-992. [7] Zhao L, Helmberger D V. Source estimation from broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1994, 84(1): 91-104. [8] Zhu L P, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms[J]. Bulletin of the Seismological Society of America, 1996, 86(5): 1634-1641. [9] Zhu L P, Tan Y, Helmberger D V, et al. Calibration of the Tibetan Plateau using regional seismic waveforms[J]. Pure and Applied Geophysics, 2006, 163: 1193-1213. [10] Tan Y, Helmberger D V. A new method for determining small earthquake source parameters using short-period P waves[J]. Bulletin of the Seismological Society of America, 2007, 97(4): 1176-1195. [11] 郑勇, 马宏生, 吕坚, 等. 汶川地震强余震(MS≥5.6)的震源机制解及其与发震构造的关系[J]. 中国科学D辑: 地球科学, 2009, 39(4): 413-426. ZHENG Yong, MA Hong-sheng, LÜ Jian, et al. Source mechanism of strong aftershocks (MS≥5.6) of the Wenchuan earthquake and its relationship with seismotectonics[J]. Science in China Series D: Earth Sciences, 2009, 39(4): 413-426 (in Chinese). [12] 罗艳, 赵里, 曾祥方, 等. 芦山地震序列震源机制及其构造应力场空间变化[J]. 中国科学: 地球科学, 2015, 45(4): 538-550. LUO Yan, ZHAO Li, ZENG Xiang-fang, et al. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field[J]. Science China Earth Sciences, 2019, 45(4): 538-550 (in Chinese). [13] 易桂喜, 龙锋, Amaury Vallage, 等. 2013年芦山地震序列震源机制与震源区构造变形特征分析[J]. 地球物理学报, 2016, 59(10): 3711-3731. YI Gui-xi, LONG Feng, Amaury Vallage, et al. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence, southwestern China[J]. Chinese Journal of Geophysics, 2016, 59(10): 3711-3731 (in Chinese). [14] 易桂喜, 龙锋, 梁明剑, 等. 2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析[J]. 地球物理学报, 2017, 60(10): 4083-4097. YI Gui-xi, LONG Feng, LIANG Ming-jian, et al. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan[J]. Chinese Journal of Geophysics, 2017, 60(10): 4083-4097 (in Chinese). [15] Luo Y, Zhao L, Tian J H. Spatial and temporal variations of stress field in the Longmenshan fault zone after the 2008 Wenchuan, China earthquake[J]. Tectonophysics, 2019, 767: 228172. [16] 孟庆君, 倪四道, 韩立波, 等. 地壳速度结构对极浅源地震深度反演的影响以荣昌地震为例[J]. 中国地震, 2014, 30(4): 490-500. MENG Qing-jun, NI Si-dao, HAN Li-bo, et al. Inverting effect of crustal velocity structure on focal depth of very shallow earthquakes: Case study of the Rongchang earthquake[J]. Earthquake Research in China, 2014, 30(4): 490-500 (in Chinese). [17] Zhu L P, Zhou X F. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence[J]. Physics and Chemistry of the Earth, 2016, 95: 10-18. [18] Wang X, Zhan Z W. Moving from 1-D to 3-D velocity model: Automated waveform-based earthquake moment tensor inversion in the Los Angeles region[J]. Geophysical Journal International, 2020, 220(1): 218-234. [19] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3): 806-822. [20] Komatitsch D, Ritsema J, Tromp J. The spectral-element method, Beowulf computing, and global seismology[J]. Science, 2002, 298(5599): 1737-1742. [21] Zheng K Y, Wang Y, Zhao L. Adjoint wavefield tomography for the Longmenshan fault zone region[R]. San Francisco: AGU Fall Meeting Abstracts, 2023: S31B-01. [22] Zhu L P, Rivera L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3): 619-627. [23] Gilbert F. Excitation of the normal modes of the earth by earthquake sources[J]. Geophysical Journal International, 1971, 22(2): 223-226. [24] Helmberger D V. Generalized ray theory for shear dislocations[J]. Bulletin of the Seismological Society of America, 1974, 64(1): 45-64. [25] Yu H Y, Zhao L, Liu Y J, et al. Stress adjustment revealed by seismicity and earthquake focal mechanisms in northeast China before and after the 2011 Tohoku-Oki earthquake[J]. Tectonophysics, 2016, 666: 23-32. [26] Su P Z, Luo Y, Zhao L. Regional stress field in the SE margin of the Tibetan Plateau revealed by the focal mechanisms of small and moderate earthquakes[J]. Tectonophysics, 2024, 885: 230420. [27] Liu Y, Yao H J, Zhang H J, et al. The community velocity model V.1.0 of southwest China, constructed from joint body- and surface-wave travel-time tomography[J]. Seismological Research Letters, 2021, 92(5): 2972-2987. [28] 刘影, 于子叶, 张智奇, 等. 基于密集流动台阵构建的川滇地区高分辨率公共速度模型2.0版本[J]. 中国科学: 地球科学, 2023, 53(10): 2407-2424. LIU Ying, YU Zi-ye, ZHANG Zhi-qi, et al. The high-resolution community velocity model V2.0 of southwest China, constructed by joint body and surface wave tomography of data recorded at temporary dense arrays[J]. Science China Earth Sciences, 2023, 53(10): 2407-2424 (in Chinese). [29] 舒甜甜. 川滇地区中强地震典型震例震源参数研究[D]. 北京: 中国地震局地震预测研究所, 2023. SHU Tian-tian. Study on source parameters of typical cases of moderate earthquakes in Sichuan-Yunnan region[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration, 2023 (in Chinese). [30] 赵珠, 张润生. 四川地区地震波分区走时表的编制[J]. 四川地震, 1987(3): 29-35. ZHAO Zu, ZHANG Run-sheng. The compilation of seismic wave zoning travel time in Sichuan area[J]. Earthquake Research in Sichuan, 1987(3): 29-35 (in Chinese). [31] 朱介寿. 汶川地震的岩石圈深部结构与动力学背景[J]. 成都理工大学学报(自然科学版), 2008, 35(4): 348-356. ZHU Jie-shou. The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(4): 348-356 (in Chinese). [32] 宋文杰. 利用被动源地震剖面研究龙门山断裂带及邻区的深部结构[D]. 成都: 成都理工大学, 2011. SONG Wen-jie. Using passive seismological profile experiment in deep crustal structure of Longmenshan fault zone and adjacent areas[D]. Chengdu: Chengdu University of Technology, 2011 (in Chinese). [33] 胡晓辉, 盛书中, 万永革, 等. 2019年6月17日四川长宁地震序列震源机制与震源区震后构造应力场研究[J]. 地球物理学进展, 2020, 35(5): 1675-1681. HU Xiao-hui, SHENG Shu-zhong, WAN Yong-ge, et al. Study on focal mechanism and post-seismic tectonic stress field of the Changning, Sichuan, earthquake sequence on June 17th 2019[J]. Progress in Geophysics, 2020, 35(5): 1675-1681 (in Chinese). [34] Kagan Y Y. 3-D rotation of double-couple earthquake sources[J]. Geophysical Journal International, 1991, 106(3): 709-716. [35] Hejrani B, Tkalčić H, Fichtner A. Centroid moment tensor catalogue using a 3-D continental scale Earth model: Application to earthquakes in Papua New Guinea and the Solomon Islands[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5517-5543. [36] 王新, 陈凌, 陈棋福. 川滇地区三维地壳速度模型评估: 可靠性、 局限性和未来突破方向[J]. 中国科学: 地球科学, 2024, 54(2): 622-637. WANG Xin, CHEN Ling, CHEN Qi-fu. Evaluation of 3D crustal seismic velocity models in southwest China: Model performance, limitation, and prospects[J]. Science China Earth Sciences, 2024, 54(2): 622-637 (in Chinese). [37] 石玉涛, 高原, 张永久, 等. 松潘—甘孜地块东部、 川滇地块北部与四川盆地西部的地壳剪切波分裂[J]. 地球物理学报, 2013, 56(2): 481-494. SHI Yu-tao, GAO Yuan, ZHANG Yong-jiu, et al. Shear-wave splitting in the crust in eastern Songpan-Garzê; block, Sichuan-Yunnan block and western Sichuan Basin[J]. Chinese Journal of Geophysics, 2013, 56(2): 481-494 (in Chinese). [38] 易桂喜, 龙锋, 闻学泽, 等. 2014年11月22日康定M6.3级地震序列发震构造分析[J]. 地球物理学报, 2015, 58(4): 1205-1219. YI Gui-xi, LONG Feng, WEN Xue-ze, et al. Seismogenic structure of the M6.3 Kangding earthquake sequence on 22 Nov. 2014, southwestern China[J]. Chinese Journal of Geophysics, 2015, 58(4): 1205-1219 (in Chinese). |