[1] 张国民, 傅征祥, 王晓青, 等. 确定全国地震重点监视防御区的研究[J]. 中国地震, 2006, 22(3): 209-221. ZHANG Guo-min, FU Zheng-xiang, WANG Xiao-qing, et al. Study on determination of the national significant seismic monitoring and protection regions[J]. Earthquake Research in China, 2006, 22(3): 209-221 (in Chinese). [2] 陈颙, 陈鑫连. 十年尺度中国地震灾害损失预测研究[M]. 北京: 地震出版社, 1995. CHEN Yong, CHEN Xin-lian. Study on the prediction of earthquake disaster loss in China on a decadal scale[M]. Beijing: Seismological Press, 1995 (in Chinese). [3] Madariaga R, Métois M, Vigny C, et al. Central Chile finally breaks[J]. Science, 2010, 328(5975): 181-182. [4] Hashimoto C, Noda A, Sagiya T, et al. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2009, 2(2): 141-144. [5] Loveless J P, Meade B J. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B2): B02410. [6] Schurr B, Asch G, Hainzl S, et al. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake[J]. Nature, 2014, 512(7514): 299-302. [7] Avouac J P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 233-271. [8] Kanamori H. Putting seismic research to most effective use[J]. Nature, 2012, 483(7388): 147-148. [9] Field E H, Milner K R, Hardebeck J L, et al. A spatiotemporal clustering model for the third Uniform California Earthquake Rupture Forecast (UCERF3-ETAS): Toward an operational earthquake forecast[J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1049-1081. [10] Field E H, Biasi G P, Bird P, et al. Long-term time-dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3)[J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 511-543. [11] Field E H, Arrowsmith R J, Biasi G P, et al. Uniform California earthquake rupture forecast, version 3 (UCERF3)—The time-independent model[J]. Bulletin of the Seismological Society of America, 2014, 104(3): 1122-1180. [12] Milner K R, Shaw B E, Goulet C A, et al. Toward physics-based nonergodic PSHA: A prototype fully deterministic seismic hazard model for southern California[J]. Bulletin of the Seismological Society of America, 2021, 111(2): 898-915. [13] Shaw B E, Milner K R, Field E H, et al. A physics-based earthquake simulator replicates seismic hazard statistics across California[J]. Science Advances, 2018, 4(8): eaau0688. [14]Fujiwara H, Kawai S, Aoi S, et al. National seismic hazard maps of Japan[J]. Bulletin of the Earthquake Research Institute University Tokyo, 2006, 81: 221-232. [15] Aki K. Synthesis of earthquake science information and its public transfer: A history of the Southern California Earthquake Center[M]. International Geophysics Elsevier, 2002, 81: 39-49. [16] 张培震, 邓起东, 张国民, 等. 中国大陆的强震活动与活动地块[J]. 中国科学(D辑), 2003, 33(S1): 12-20. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Guo-min, et al. Strong earthquake activity and active blocks in mainland China[J]. Science in China Series (Series D), 2003, 33(S1): 12-20 (in Chinese). [17] 张国民, 马宏生, 王辉, 等. 中国大陆活动地块与强震活动关系[J]. 中国科学D辑: 地球科学, 2004, 34(7): 591-599. ZHANG Guo-min, MA Hong-sheng, WANG Hui, et al. Boundaries between active tectonic blocks and strong earthquake in the China mainland[J]. Science in China Series D: Earth Sciences, 2004, 34(7): 591-599 (in Chinese). [18] 张国民, 张培震. “大陆强震机理与预测”中期学术进展[J]. 中国基础科学, 2000(10): 4-10. ZHANG Guo-min, ZHANG Pei-zhen. Academic progress on the mechanism and forecast for continental strong earthquake in the first two years[J]. China Basic Science, 2000(10): 4-10 (in Chinese). [19] 张国民, 张培震. 近年来大陆强震机理与预测研究的主要进展[J]. 中国基础科学, 1999(Z1): 47-58. ZHANG Guo-min, ZHANG Pei-zhen. Recent research progress on the mechanism and forecast for continental strong earthquakes[J]. China Basic Science, 1999(Z1): 47-58 (in Chinese). [20] 张培震, 邓起东, 张竹琪, 等. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学: 地球科学, 2013, 43(10): 1607-1620. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica Terrae, 2013, 43(10): 1607-1620 (in Chinese). [21] M7专项工作组. 中国大陆大地震中-长期危险性研究[M]. 北京: 地震出版社, 2012. M7 Special Working Group. Study on the mid-to long-term potential of large earthquakes on the Chinese continent[J]. Beijing: Seismological Press, 2012 (in Chinese). [22] 邵志刚, 武艳强, 季灵运, 等. 中国大陆活动地块边界带主要断层的强震震间晚期综合判定[J]. 地球物理学报, 2022, 65(12): 4643-4658. SHAO Zhi-gang, WU Yan-qiang, JI Ling-yun, et al. Comprehensive determination for the late stage of the interseismic period of major faults in the boundary zone of active tectonic blocks in Chinese mainland[J]. Chinese Journal of Geophysics, 2022, 65(12): 4643-4658 (in Chinese). [23] Sykes L R. Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians[J]. Journal of Geophysical Research, 1971, 76(32): 8021-8041. [24] 徐锡伟, 吴熙彦, 于贵华, 等. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 2017, 39(2): 219-275. XU Xi-wei, WU Xi-yan, YU Gui-hua, et al. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilitary application in mainland China[J]. Seismology and Geology, 2017, 39(2): 219-275 (in Chinese). [25] Kagan Y Y, Jackson D D. Seismic gap hypothesis: Ten years after[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B13): 21419-21431. [26] Bilham R, Gaur V K, Molnar P. Himalayan seismic hazard[J]. Science, 2001, 293(5534): 1442-1444. [27]Savage J C, Prescott W H. Precision of geodolite distance measurements for determining fault movements[J]. Journal of Geophysical Research, 1973, 78(26): 6001-6008. [28] Matsu'ura M, Jackson D D, Cheng A. Dislocation model for aseismic crustal deformation at Hollister, California[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12661-12674. [29] Meade B J, Hager B H. Block models of crustal motion in southern California constrained by GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B3): B03403. [30] McCaffrey R, Stein S, Freymueller J T. Crustal block rotations and plate coupling[M]//Stein S, Freymueller J. Plate Boundary Zones, Geodynamics Series, 2002, 30: 101-122. [31] Simoes M, Avouac J P, Cattin R, et al. The Sumatra subduction zone: A case for a locked fault zone extending into the mantle[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B10): B10402. [32] 赵静, 江在森, 武艳强, 等. Defnode负位错模型反演结果的可靠性和稳定性分析[J]. 大地测量与地球动力学, 2013, 33(1): 21-24. ZHAO Jing, JIANG Zai-sen, WU Yan-qiang, et al. Analysis of reliability and stability of inversion result with negative dislocation model of Defnode[J]. Journal of Geodesy and Geodesy and Geodynamics, 2013, 33(1): 21-24 (in Chinese). [33] Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics[M]. USA: Blackwell Publishing, 2008. [34] Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research, 1998, 103(B10): 24347-24358. [35] King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953. [36] Wang R J, Lorenzo-Martín F, Roth F. PSGRN/PSCMP—a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 2006, 32(4): 527-541. [37] Freed A M, Lin J. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 2001, 411(6834): 180-183. [38] Stein R S, Barka A A, Dieterich J H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophysical Journal International, 1997, 128(3): 594-604. [39] Lin C H. The 1999 Taiwan earthquake: A proposed stress-focusing, heel-shaped model[J]. Bulletin of the Seismological Society of America, 2001, 91(5): 1053-1061. [40] Katsumata K. A long-term seismic quiescence before the 2004 Sumatra (MW9.1) earthquake[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 167-176. [41] Katsumata K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku Earthquake (M=9.0)[J]. Earth, Planets and Space, 2011, 63: 709-712. [42] Buffe C G, Harsh P W, Burford R O. Steady-state seismic slip: A precise recurrence model[J]. Geophysical Research Letters, 1977, 4(2): 91-94. [43] Nishenko S P, Buland R. A generic recurrence interval distribution for earthquake forecasting[J]. Bulletin of the Seismological Society of America, 1987, 77(4): 1382-1399. [44] 闻学泽. 中国大陆活动断裂段破裂地震复发间隔的经验分布[J]. 地震学报, 1999, 21(6): 616-622. WEN Xue-ze. Distribution of empirical recurrence intervals of segment-rupturing earthquakes on active faults of the Chinese mainland[J]. Acta Seismologica Sinica, 1999, 21(6): 616-622 (in Chinese). [45] 王芃, 邵志刚, 刘晓霞, 等. 中国陆区活动地块边界带主要断层10年尺度强震发生概率[J]. 地球物理学报, 2022, 65(10): 3829-3843. WANG Peng, SHAO Zhi-gang, LIU Xiao-xia, et al. Ten-year probability of strong earthquakes on major faults in boundaries of active blocks in Chinese continent[J]. Chinese Journal of Geophysics, 2022, 65(10): 3829-3843 (in Chinese). [46] 闻学泽. 活动断裂地震潜势的定量评估[M]. 北京: 地震出版社, 1995. WEN Xue-ze. Quantitative assessment of seismic potential of active faults[M]. Beijing: Seismological Press, 1995 (in Chinese). [47] Working Group on California Earthquake Probabilities. Seismic hazards in southern California: Probable earthquakes, 1994 to 2024[J]. Bulletin of the Seismological Society of America, 1995, 85(2): 379-439. [48] Shao Z G, Wu Y Q, Ji L Y, et al. Assessment of strong earthquake risk in the Chinese mainland from 2021 to 2030[J]. Earthquake Research Advances, 2023, 3(1): 100177. [49] Shimazaki K, Nakata T. Time-predictable recurrence model for large earthquakes[J]. Geophysical Research Letters, 1980, 7(4): 279-282. [50] Meade B J. Present-day kinematics at the India-Asia collision zone[J]. Geology, 2007, 35(1): 81-84. [51] Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002. [52] 中国标准书号. GB 18306—2015[S]. 北京: 标准出版社, 2015. China Standard Book Number: GB 18306—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese). [53] 俞言祥, 李山有, 肖亮. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 2013, 8(1): 24-33. YU Yan-xiang, LI Shan-you, XIAO Liang. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 2013, 8(1): 24-33 (in Chinese). [54] Xu W J, Wu J, Gao M T. Seismic hazard analysis of China's mainland based on a new seismicity model[J]. International Journal of Disaster Risk Science, 2023, 14(2): 280-297. [55] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28(6): 1239-1249. HUANG Run-qiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1239-1249 (in Chinese). [56] 王涛, 刘甲美, 栗泽桐, 等. 中国地震滑坡危险性评估及其对国土空间规划的影响研究[J]. 中国地质, 2021, 48(1): 21-39. WANG Tao, LIU Jia-mei, LI Ze-tong, et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China, 2021, 48(1): 21-39 (in Chinese). [57] 杜轲, 孙景江, 丁宝荣, 等. 显式分析方法在高层建筑弹塑性地震反应分析中的适用性研究[J]. 地震工程与工程振动, 2015, 35(4): 85-93. DU Ke, SUN Jing-jiang, DING Bao-rong, et al. The applicability of explicit analysis method for elastic-plastic seismic response analysis of high-rise building[J]. Earthquake Engineering and Engineering Vibration, 2015, 35(4): 85-93 (in Chinese). [58] 陈棋福, 陈凌. 利用国内生产总值和人口数据进行地震灾害损失预测评估[J]. 地震学报, 1997, 19(6): 640-649. CHEN Qi-fu, CHEN Ling. Seismic disaster loss prediction and assessment using GDP and population data[J]. Acta Seismologica Sinica, 1997, 19(6): 640-649 (in Chinese). [59] 尹之潜. 结构易损性分类和未来地震灾害估计[J]. 中国地震, 1996(1): 49-55. YIN Zhi-qian. Classification of structure vulnerability and evaluating earthquake damage from future earthquake[J]. Earthquake Research in China, 1996(1): 49-55 (in Chinese). [60] Stirling M, McVerry G, Gerstenberger M, et al. National seismic hazard model for New Zealand: 2010 update[J]. Bulletin of the Seismological Society of America, 2012, 102(4): 1514-1542. [61] Silva V, Amo-Oduro D, Calderon A, et al. Global Earthquake Model (GEM) Risk Map[EB/OL]. (2018-12-05)[2025-01-21]. https://doi.org/10.13117/GEM-GLOBAL-SEISMIC-RISK-MAP-2018. [62] Jordan T H. Earthquake system science in Southern California[J]. Bulletin of the Earthquake Research Institute University Tokyo, 2006, 81: 211-219. [63] Harmsen S, Hartzell S, Liu P. Simulated ground motion in Santa Clara Valley, California, and vicinity from M≥6.7 scenario earthquakes[J]. Bulletin of the Seismological Society of America, 2008, 98(3): 1243-1271. [64] 杨宏峰, 姚素丽, 陈翔. 非均匀断层上的破裂传播及对震级预测的挑战[J]. 科学通报, 2022, 67(13): 1390-1403. YANG Hong-feng, YAO Su-li, CHEN Xiang. Rupture propagation on heterogeneous fault: Challenges for predicting earthquake magnitude[J]. Chinese Science Bulletin, 2022, 67(13): 1390-1403 (in Chinese). [65] 陈晓非. 基于地震过程情景模拟的震害预测[R]. 北京: 2014年中国地球科学联合学术年会论文集, 2014: 1717. CHEN Xiao-fei. Earthquake damage prediction based on seismic process scenario simulation[R]. Beijing: Proceedings of the 2014 Annual Academic Conference on Earth Sciences in China, 2014: 1717 (in Chinese). [66] Somerville P G, Graves R W. Characterization of earthquake strong ground motion[J]. Pure and Applied Geophysics, 2003, 160: 1811-1828. [67] Tantala M, Nordenson G, Deodatis G, et al. Earthquake risks and mitigation in the New York, new jersey and Connecticut region[R]. Multidisciplinary Center for Earthquake Engineering Technical Reports, 2003. [68] 郑文俊, 张竹琪, 郝明, 等. 强震孕育发生的大陆活动地块理论未来发展与强震预测探索[J]. 科学通报, 2022, 67(13): 1352-1361. ZHENG Wen-jun, ZHANG Zhu-qi, HAO Ming, et al. Physical basis for prediction of continental strong earthquakes: Development and prospect of active tectonic block theory[J]. Chinese Science Bulletin, 2022, 67(13): 1352-1361 (in Chinese). [69] 郑文俊, 王庆良, 袁道阳, 等. 活动地块假说理论框架的提出、 发展及未来需关注的科学问题[J]. 地震地质, 2020, 42(2): 245-270. ZHENG Wen-jun, WANG Qing-liang, YUAN Dao-yang, et al. The concept, review and new insights of the active-tectonic block hypothesis[J]. Seismology and Geology, 2020, 42(2): 245-270 (in Chinese). [70] Wu Z L, Ma T F, Jiang H, et al. Multi-scale seismic hazard and risk in the China mainland with implication for the preparedness, mitigation, and management of earthquake disasters: An overview[J]. International Journal of Disaster Risk Reduction, 2013, 4: 21-33. [71] 梅世蓉. 地震前兆场物理模式与前兆时空分布机制研究(一)坚固体孕震模式的由来与证据[J]. 地震学报, 1995, 17(3): 273-282. MEI Shi-rong. Study on physical models of earthquake precursory fields and mechanism of spatiotemporal distribution of precursors (Ⅰ): Origin and evidence of solid earthquake-breeding model[J]. Acta Seismologica Sinica, 1995, 17(3): 273-282 (in Chinese). [72] 郭增建, 秦保燕. 地震成因和地震预报[M]. 北京: 地震出版社, 1991. GUO Zeng-jian, QIN Bao-yan. Causes of earthquakes and earthquake prediction[M]. Beijing: Seismological Press, 1991 (in Chinese). [73] 马瑾, Sherman S I, 郭彦双. 地震前亚失稳应力状态的识别以5°拐折断层变形温度场演化的实验为例[J]. 中国科学: 地球科学, 2012, 42(5): 633-645. MA Jin, SHERMAN S I, GUO Yan-shuang. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault[J]. Science China Earth Sciences, 2012, 42(5): 633-645 (in Chinese). [74] 张国民, 傅征祥, 桂燮泰. 地震预报引论[M]. 北京: 科学出版社, 2001. ZHANG Guo-min, FU Zheng-xiang, GUI Xie-tai. Introduction to earthquake prediction[M]. Beijing: Science Press, 2001 (in Chinese). |