欢迎访问《地震》,

地震 ›› 2006, Vol. 26 ›› Issue (4): 22-28.

• • 上一篇    下一篇

一种优化地震前兆观测点布设的方法

王炜1, 赵利飞1, 林命週1, 马钦忠1, 吴耿锋2, 吴绍春2   

  1. 1.上海市地震局, 上海 200062;
    2.上海大学计算机工程与科学学院, 上海 200072
  • 收稿日期:2006-03-13 修回日期:2006-05-15 发布日期:2021-11-01
  • 作者简介:王炜(1947-), 男, 江苏南京人, 研究员, 主要从事地震预报等方面研究。

A method to optimize earthquake precursor observatories

WANG Wei1, ZHAO Li-fei1, LIN Ming-zhou1, MA Qin-zhong1, WU Geng-feng2, WU Shao-chun2   

  1. 1. Earthquake Administration of Shanghai Municipality, Shanghai 200062, China;
    2. Computer Institute of Shanghai University, Shanghai 200072, China
  • Received:2006-03-13 Revised:2006-05-15 Published:2021-11-01

摘要: 使用基于主成分分析的优化地震前兆观测点方法, 用1998年数据对上海地区的9个水氡观测台站进行优化。 结果表明, 可以撤消3个信息量较小的台站观测, 剩下的6个台所含信息量占全部9个台站信息量的比例为93.0%。 表明在地震前兆观测中, 如果局部地区的地震前兆观测台站数据具有一定的相关性, 那么即使大量增加前兆观测台站的数量, 也并不意味着所获取的信息量会同步增多。 文中所用的优化方法对于指导地震前兆观测台站的优化具有一定意义。

关键词: 主成分分析, 特征向量, 贡献率, 优化台站

Abstract: Based on principal component analysis method, the authors optimized nine radon observatories in Shanghai area by using 1998 radon data. The result shows that three observatories that maintain little information can be canceled, because the rest six observatories covered 93.0% information of the total nine observatories. It means that an increase of observatory number does not always work, because the information gained from these observatories will not increase in accordance if the observatory data are correlative in the local area. The method to optimize observatory distribution is very important to direct the optimization of earthquake precursory observatories.

Key words: Principal component analysis, Eigenvector, Contribution ratio, Optimizing observatory

中图分类号: