[1] Hobbs B E, Ord A. Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes[J]. J Geophys Res, 1988, 93: 10521-10540. [2] Griggs D T. High-pressure phenomena with applications to geophysics, in Moden physics for the engineer,edited by L N Ridenour[M]. New York: McGraw-Hill, 1954. 72-305. [3] Griggs D. The sinking lithosphere and the focal mechanism of deep earthquakes, in The Norrrre of tlte Solid Emtlz, edited by E C Robertson[M]. New York: McGraw-Hill, 1972. 361-384. [4] Griggs D, Handin J. Observations on fracture and a hypothesis of earthquakes[J]. Mem Geol Soc Am, 1960, 79: 347-373. [5] Post R L Jr. High-temperature creep of Mt. Burnet dunite[J]. Tectonophysics, 1977, 42: 75-110. [6] Griggs D T, Baker D W. The origin of deep-locus earthquakes, in Properties of Matter under unusual conditions[M]. New York: J Wiley, 1968. 23-42. [7] Ogawa M. Shear instability in a visco-elastic material as the cause of deep-focus earthquakes[J]. J Geophys Res, 1987, 92: 13801-13810. [8] Bridgman P W. Polymorphic transition and geological phenomenon[J]. Am J Sci, 1945, 247A: 90-97. [9] Kirby S H. Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes[J]. J Geophys Res, 1987, 92: 13789-13800. [10] Liu L. Phase transformation, earthquakes and the descending lithosphere[J]. Phys Earth Planet Inter, 1983, 32: 226-240. [11] Meade C, Jeanloz R. Acoustic emmissions and shear instabilities during phase transformation in Si and Ge at ultrahigh pressure[J]. Nature, 1989, 339: 616-618. [12] Dennis J G, Walker C T. Earthquakes resulting metastable phase transitions[J]. Tectonophysics, 1965, 2: 401-407. [13] Kawakatsu H. Insignificant isotropic component in the moment tensor of deep earthquakes[J]. Nature, 1991, 351: 50-53. [14] Sykes L R. Deep earthquakes and rapidly-running phase changes: A reply to Dennis and Walker[J]. J Geophys Res, 1968, 73: 1508-1510. [15] Green H W Ⅱ, Burnley P C. A new self-organizing mechanism for deep-focus earthquakes[J]. Nature, 1989, 341: 733-737. [16] Green H W Ⅱ, YoungT E, Walker D. Anticrack-associated faulting at very high pressure in natural olivine[J]. Nature, 1990, 348: 720-722. [17] Burnley P C, Green H W Ⅱ, Prior D. Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes[J]. J Geophys Res, 1991, 96: 425-443. [18] Ringwood A E. Composition and petrology of the Earth′s mantle[J]. New York: MeGraw-Hill, 1975. [19] Sung C M, Burns R G. Kinetics of the high-pressure phase transformations: Implications to the evolution of the olivine-spinel phase transition in the downgoing lithosphere and its consequences on the dynamics of the mantle[J]. Tectonophysics, 1976b, 31: 1-32. [20] Sung, C M, Burns R G. Kinetics of the olivine-spinel transition: Implications to deep-focus earthquake genesis[J]. Earth Planet Sci Lett, 1976a, 32: 165-170. [21] Kirby S H, Durham W B, Stem L A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere[J]. Science, 1991, 52: 216-225. [22] Kirby S H, Stein S, Okal E A. Metastable mantle phase transformation and deep earthquakes in subducting oceanic lithosphere[J]. Reviews of Geophysics, 1996, 4(2): 261-306. [23] Rubie D C, Ross C R II. Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes[J]. Phys Earth Planet Inter, 1994, 86: 223-241. [24] DBler R, Yuen D A, Karato S, et al. Two-dimensional thermo-kinetic model for the olivine-spinel phase transition in subducting slabs[J]. Phys Earth Planet Inter, 1996, 94: 217-239. [25] Devaux J P, Schubert G, Anderson C. Formation of a metastable olivine wedge in a subducting slab[J]. J Geophys Res, 1997, 102: 24627-24637. [26] Frohlich C. The nature of deep-focus earthquakes[J]. Ann Rev Earth Planet Sci, 1989, 17: 227-254. [27] Iidaka T, Suetsugu D. Seismological evidence for metastable olivine inside a subducting slab[J]. Nature, 1992, 356: 593-595. [28] Kope K D, Wiens D A. The wave guide effect of metastable olivine in slabs[J]. Geophys Res Lett, 2000, 27: 573-576. [29] Koper K D, Wiens D A, Dorman L M, et al. Modeling the Tonga slab: can travel time data resolve a metastable olivine wedge[J]. J Geophys Res, 1998, 103: 30079-30100. [30] Marton F, Shankland T J, Rubie D C, et al. Effects of variable thermal conductivity on the mineralogy of subducting slabs and implications for mechanisms of deep earthquakes[J]. Phys Earth Planet Inter, 2005, 149: 3-64. [31] Mosenfelder J L, Marton F C, Ross, II C R, et al. Experimental constraints on the depth of olivine metastability in subducting lithosphere[J]. Phys Earth Planet Inter, 2001, 127: 165-180. [32] Xu Y, Shankland T J, Linhardt S, et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K[J]. Phys Earth Planet Inter, 2004, 143-144: 321-336. [33] Stein C A, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 1992, 359: 123-129. [34] Carminati E, Negredo A M, Valera J L, et al. Subduction-related intermediate-depth and deep seismicity in Italy: insights from thermal and rheological modeling[J]. Phys Earth Planet Inter, 2005, 149: 65-79. [35] Hosoya T, Kubo T, Ohtani E, et al. Water controls the fields of metastable olivine in cold subducting slabs[J]. Geophys Res Lett, 2005, 32( L17305): 1-4. [36] Vaisnys J R, Pilbeam C C. Deep-earthquake initiation by phase transformation[J]. J Geophys Res, 1976, 81: 985-988. [37] McGarr A. Seismic moments of earthquakes beneath island arcs, phase change, and subduction velocities[J]. J Geophys Res, 1977, 82: 256-264. [38] Fletcher R C, Pollard DD. Anticrack model for pressure solution surfaces[J]. Geology, 1981, 9: 419-421. [39] Green H W Ⅱ, Scholz C H, TingleT N. Acoustic emissions produced by anticrack faulting during the olivine→spinel tranformation[J]. Geophys Res Lett, 1992a, 19: 789-792. [40] Liu L. Phase transformation and deep-focus earthquakes[J]. Physica A, 1995, 221: 143-151. [41] Green H W II, Y Zhou. Transformation-induced faulting requires an exothermic reaction and explains the termination of earthquakes at the base of the mantle transition zone[J]. Tectonophysics, 1996, 256: 39-56. [42] Vaughan P J, Coe R S. Creep mechanism flow properties of the germanate analog of forsterite[J]. Techtonophysics, 1981, 86: 389-404. [43] Kohlstedt D L, Keppler H, Rubie D C. Solubility of water in the α、 β and γ phases of (Mg, Fe)2SiO4[J]. Contrib Mineral Petrol, 1996, 123: 345-357. [44] Bell D R, Rossman G R. Water in earth′s mantle: The role of nominally anhydrous minerals[J]. Science, 1992, 255: 1391-1397. [45] 金日东, 金振民. 蛇纹石脱水与大洋俯冲带中源地震(70~300 km)的关系[J]. 地学前缘, 2006, 13: 191-204. [46] ChenJ H, Inoue T, Yurimoto H, et al. Effect of water on olivine-wadsleyite phase boundary in the (Mg, Fe)2SiO4 system[J]. Geophys Res Lett, 2002, 29: 1-4. [47] Rubie D C. The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism[J]. Mineral Ma, 1986, 50: 399-415. [48] Kubo T, Ohtani E, Fujino K. Effects of water on the α-β transformation kinetics in San Carlos olivine[J]. Science, 1998, 281: 85-87. |