[1] Segall P, Davis J L. GPS applications for geodynamics and earthquake studies[J]. Annu Rev Earth Planet Science, 1997, 25: 301-306. [2] Shen Z K, Wang M, Li Y, et al. Crustal deformation along the Altyn Tagh fault system, western China, from GPS[J]. Journal of Geophysical Research, 2001, 106(B12): 30607-630621. [3] Wang Q, et al. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 2001, 294(5542): 574-577. [4] Massonnet D, Feigl K, Rossi M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369: 227-230. [5] Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433): 138-141. [6] Peltzer G, Crampe F, King G. Evidence of nonlinear elasticity of the crust from the MW7.6 Manyi (Tibet) earthquake[J]. Science, 1999, 286(5438): 272-276. [7] Argus D F, Heflin M B, Peltzer G, et al. Interseismic strain accumulation and anthropogenic motion in metropolitan Los Angeles[J]. Journal of Geophysical Research-Solid Earth, 2005, 110(B4): 1192-1201. [8] Bawden G W, Thatcher W, Stein R S, et al. Tectonic contraction across Los Angeles after removal of groundwater pumping effects[J]. Nature, 2001, 412(6849): 812-815. [9] 徐锡伟, 吴卫民, 张先康, 等. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社, 2002. [10] Massonnet D, Feigl K. Radar interferometry and its application to changes in the Earth's surface[J]. Rev Geophys, 1998, 36: 441-500. [11] 陈蓓蓓, 宫辉力, 李小娟, 等. 基于InSAR 技术北京地区地面沉降监测与风险分析[J]. 地理与地理信息科学, 2011, 27(2): 12-23. [12] 杨艳, 贾三满, 王海刚. 北京平原区地面沉降现状及发展趋势分析[J]. 上海地质, 2010, 31(4): 23-28. [13] 江娃利, 侯治华, 谢新生. 北京平原南口—孙河断裂带昌平旧县探槽古地震事件研究[J]. 中国科学D辑: 地球科学, 2001, 31(6): 501-509. [14] López-Quiroz P, Doin M P, Tupin F, et al. Time series analysis of Mexico City subsidence constrained by radar interferometry[J]. Journal of Applied Geophysics, 2009, 69(1): 1-15, doi:10.1016/j.jappgeo.2009.02.006. [15] Amelung F, Galloway D L, Bell J W, et al. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation[J]. Geology, 1999, 27(6): 483-486, doi:10.1130/0091-7613. [16] Sandwell D, Myer D, Mellors R, et al. Accuracy and Resolution of ALOS Interferometry: Vector Deformation Maps of the Father’s Day Intrusion at Kilauea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 2032-2051. [17] Rosen P A, Henley S, Simons M, et al. Updated Repeat Orbit Interferometry Package Released[J]. Eos Trans AGU, 2004, 85(5): 47. [18] Farr T G, Kobrick M. Shuttle Radar Topography Mission produces a wealth of data[J]. AGU Eos, 2000, 81: 583-585. [19] Chen C W, Zebker H A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms[J]. J Opt Soc Am A, 2000, 17(3): 401-414. [20] Hanssen R F. Radar interferometry: data interpretation and error analysis[M]. Kluwer Academic Publishers, 2001. [21] Fialko Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system[J]. Nature, 2006, 441: 968-971. [22] Schmidt D A, Bürgmann R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set[J]. J Geophys Res, 2003, 108(B9): 2416, doi:10.1029/2002jb002267. [23] Segall P. Earthquakes triggered by fluid extraction[J]. Geology, 1989, 17: 942-946. |