地震 ›› 2016, Vol. 36 ›› Issue (1): 87-104.
李海艳1, 马宏生2, 邵志刚1, 王芃1
收稿日期:
2015-07-14
发布日期:
2020-07-03
作者简介:
李海艳(1990-), 女, 湖南衡阳人, 在读硕士研究生, 主要从事地震活动性和地震预测等研究。
基金资助:
LI Hai-yan1, MA Hong-sheng2, SHAO Zhi-gang1, WANG Peng1
Received:
2015-07-14
Published:
2020-07-03
摘要: 震间断层强震危险性研究是地震中长期预测中的基础科学问题, 其中断层运动及应力演化的研究对认识地震的孕育发生、 破裂过程具有重要意义, 为地震危险性分析提供科学依据。 本文首先回顾了震间断层运动模型的理论研究进展; 其次, 简略地回顾了断层不均匀性和断层摩擦定律的研究历程, 论述了确定摩擦参数、 圈定凹凸体的发展趋势与研究动态, 并阐述了基于断层不均匀性和断层摩擦定律的强震过程数值模拟的应用; 最后, 论述了基于断层运动和应力演化分析断层中长期强震危险程度的应用, 并叙述了与地震短期、 临震预测密切相关的断层运动成核过程。
中图分类号:
李海艳, 马宏生, 邵志刚, 王芃. 基于断层运动和应力演化分析断层强震危险程度的研究进展[J]. 地震, 2016, 36(1): 87-104.
LI Hai-yan, MA Hong-sheng, SHAO Zhi-gang, WANG Peng. Analyzing Strong Earthquake Hazard based on Fault Movements and Stress Evolution: A Review[J]. EARTHQUAKE, 2016, 36(1): 87-104.
[1] Scholz C H. Earthquakes and friction laws[J]. Nature, 1998, 391(6662): 37-42. [2] 张国民, 尹京苑. 地震预报研究的发展展望[J]. 防灾减灾工程学报, 2003, (4): 83-90. [3] Reid H. The mechanics of the earthquake in the California earthquake of 18 April 1906[J]. Report, Carnegie Institute, Washington DC, 1910, 2. [4] Matsu'ura M, Jackson D D, Cheng A. Dislocation model for aseismic crustal deformation at Hollister, California[J]. Journal of Geophysical Research, 1986, 91(B12): 12661-12674. [5] Brace W, Byerlee J. Stick-slip as a mechanism for earthquakes[J]. Science, 1966, 153(3739): 990-992. [6] Dieterich J. H. Time-dependent friction in rocks[J]. Journal of Geophysical Research, 1972, 77(20): 3690-3697. [7] Scholz C H, Molnar P, Johnson T. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism[J]. Journal of Geophysical Research, 1972, 32: 6392-6406. [8] Ruina A L. Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior[J]. Dissertation Abstracts International Part B: Science and Engineering, 1982, 43(2). [9] Ruina A. Slip instability and state variable friction laws[J]. Journal of Geophysical Research, 1983, 88(B12): 10359-10370. [10] Chester F, Temperature and rate dependence of friction for faults[J]. Eos, Transactions American Geophysical Union, 1988, 69: 471. [11] Linker M, Dieterich J. Effects of variable normal stress on rock friction: Observations and constitutive equations[J]. Journal of Geophysical Research, 1992, 97(B4): 4923-4940. [12] Das S, Aki K. Fault plane with barriers: a versatile earthquake model[J]. Journal of Geophysical Research, 1977, 82(36): 5658-5670. [13] Lay T, Kanamori H. Earthquake doublets in the Solomon Islands[J]. Physics of the Earth and Planetary Interiors, 1980, 21(4): 283-304. [14] Dieterich J H. A model for the nucleation of earthquake slip[J]. Earthquake source mechanics, 1986, 37: 37-47. [15] Kato N. Numerical simulation of recurrence of asperity rupture in the Sanriku region, northeastern Japan[J]. Journal of Geophysical Research, 2008, 113(B6). [16] Kato N, Lei X, Wen X. A synthetic seismicity model for the Xianshuihe fault, southwestern China: simulation using a rate-and state-dependent friction law[J]. Geophysical Journal International, 2007, 169(1): 286-300. [17] Barbot S, Lapusta N, Avouac J. P. Under the hood of the earthquake machine: Toward predictive modeling of the seismic cycle[J]. Science, 2012, 336(6082): 707-710. [18] Kaneko Y, Fialko Y, Sandwell D, et al. Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate- and-state friction properties[J]. Journal of Geophysical Research, 2013, 118(1): 316-331. [19] Rau R J, Chen K H, Ching K E. Repeating earthquakes and seismic potential along the northern Longitudinal Valley fault of eastern Taiwan[J]. Geophysical Research Letters, 2007, 34(24). [20] Loveless J P, Meade B J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW=9.0 Tohoku-oki earthquake[J]. Geophysical Research Letters, 2011, 38(17). [21] King G C, Stein R S, Lin J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953. [22] Toda S, Stein R S, Reasenberg P A, et al. Stress transferred by the 1995 MW=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities[J]. Journal of Geophysical Research, 1998, 103(B10): 24543-24565. [23] Ali Syed T, Freed A M, Calais E, et al. Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation[J]. Geophysical Journal International, 2008, 174(3): 904-918. [24] 邵志刚, 周龙泉, 蒋长胜, 等, 2008年汶川MS8.0地震对周边断层地震活动的影响[J]. 地球物理学报, 2010, (8): 1784-1795. [25] 徐晶. 鲜水河断裂带的构造应力加载与强震间相互影响研究[D]. 中国地震局地震预测研究所, 2013. [26] Dieterich J. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. Journal of Geophysical Research, 1994, 99(B2): 2601-2618. [27] Catalli F, Cocco M, Console R, et al. Modeling seismicity rate changes during the 1997 Umbria-Marche sequence (central Italy) through a rate- and state-dependent model[J]. Journal of Geophysical Research, 2008, 113(B11). [28] Toda S, Stein R S, Richards-Dinger K, et al. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer[J]. Journal of Geophysical Research, 2005, 110(B5). [29] Chen C H, Wen S, Liu J Y, et al. Surface displacements in Japan before the 11 March 2011 M9. 0 Tohoku-Oki earthquake[J]. Journal of Asian Earth Sciences, 2014, 80: 165-171. [30] Chen C H, Yeh T K, Liu J. Y, et al. Surface deformation and seismic rebound: implications and applications[J]. Surveys in Geophysics, 2011, 32(3): 291-313. [31] Steketee J. On Volterra's dislocations in a semi-infinite elastic medium[J]. Canadian Journal of Physics, 1958, 36(2): 192-205. [32] Okada Y. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040. [33] Pollitz F F. Postseismic relaxation theory on the spherical earth[J]. Bulletin of the Seismological Society of America, 1992, 82(1): 422-453. [34] Savage J, Burford R. Geodetic determination of relative plate motion in central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845. [35] Bilham R, Larson K, Freymueller J, et al. GPS measurements of present-day convergence across the Nepal Himalaya[J]. Nature, 1997, 386(6620): 61-64. [36] Meade B J, Hager B H. Block models of crustal motion in southern California constrained by GPS measurements[J]. Journal of Geophysical Research, 2005, 110(B3). [37] Savage J, Prescott W. Asthenosphere readjustment and the earthquake cycle[J]. Journal of Geophysical Research, 1978, 83(B7): 3369-3376. [38] McCaffrey R. Crustal block rotations and plate coupling[J]. Plate boundary zones, 2002: 101-122. [39] McCaffrey R, Long M D, Goldfinger C, et al. Rotation and plate locking at the southern Cascadia subduction zone[J]. Geophysical Research Letters, 2000, 27(19): 3117-3120. [40] Chlieh M, Avouac J P, Sieh K, et al. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements[J]. Journal of Geophysical Research, 2008, 113(B5). [41] Moreno M, Rosenau M, Oncken O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone[J]. Nature, 2010, 467(7312): 198-202. [42] Prawirodirdjo L, McCaffrey R, Chadwell C D, et al. Geodetic observations of an earthquake cycle at the Sumatra subduction zone: Role of interseismic strain segmentation[J]. Journal of Geophysical Research, 2010, 115(B3). [43] Scholz C H. The mechanics of earthquakes and faulting[M]. Cambridge university press, 1990. [44] Chlieh M, Perfettini H, Tavera H, et al. Interseismic coupling and seismic potential along the Central Andes subduction zone[J]. Journal of Geophysical Research, 2011, 116(B12). [45] Hori T, Miyazaki S I. Hierarchical asperity model for multiscale characteristic earthquakes: A numerical study for the off-Kamaishi earthquake sequence in the NE Japan subduction zone[J]. Geophysical Research Letters, 2010, 37(10). [46] Hori T, Miyazaki S I. A possible mechanism of M 9 earthquake generation cycles in the area of repeating M 7~ 8 earthquakes surrounded by aseismic sliding[J]. Earth, Planets and Space, 2011, 63(7): 773-777. [47] Bowden F P, Tabor D. The friction and lubrication of solids[M]. Vol.2. 1964: Wiley Online Library. [48] Aki K. Asperities, barriers, characteristic earthquakes and strong motion prediction[J]. Journal of Geophysical Research, 1984, 89(B7): 5867-5872. [49] Ruff L, Kanamori H. The rupture process and asperity distribution of three great earthquakes from long-period diffracted P-waves[J]. Physics of the Earth and Planetary Interiors, 1983, 31(3): 202-230. [50] Beck S L, Ruff L J. Rupture process of the great 1963 Kurile Islands earthquake sequence: Asperity interaction and multiple event rupture[J]. Journal of Geophysical Research, 1987, 92(B13): 14123-14138. [51] Dragoni M, Santini S. Long-term dynamics of a fault with two asperities of different strengths[J]. Geophysical Journal International, 2012, 191(3): 1457-1467. [52] Aki K. Characterization of barriers on an earthquake fault[J]. Journal of Geophysical Research, 1979, 84(B11): 6140-6148. [53] Urbancic T, Trifu C, Long J, et al. Space-time correlations of b values with stress release[J]. Pure and Applied Geophysics, 1992, 139(3-4): 449-462. [54] Wiemer S, Wyss M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times?[J]. Journal of Geophysical Research, 1997, 102(B7): 15115-15128. [55] 易桂喜, 闻学泽, 范军, 等. 由地震活动参数分析安宁河则木河断裂带的现今活动习性及地震危险性[J]. 地震学报, 2004, (3): 294-303. [56] 李正芳, 周本刚. 利用断裂带上的低b值识别凹凸体方法的探讨以龙门山断裂带和鲜水河断裂带为例[J]. 震灾防御技术, 2014, (2): 213-225. [57] Yamanaka Y, Kikuchi M. Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data[J]. Journal of Geophysical Research, 2004, 109(B7). [58] Rabinowicz E. The nature of the static and kinetic coefficients of friction[J]. Journal of applied physics, 1951, 22(11): 1373-1379. [59] Beeler N, Tullis T, Weeks J. The roles of time and displacement in the evolution effect in rock friction[J]. Geophysical Research Letters, 1994, 21(18): 1987-1990. [60] Marone C. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 1998, 26(1): 643-696. [61] Blanpied M, Marone C, Lockner D, et al. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. Journal of Geophysical Research, 1998, 103(B5): 9691-9712. [62] Kato N, Tullis T E. A composite rate- and state-dependent law for rock friction[J]. Geophysical Research Letters, 2001, 28(6): 1103-1106. [63] Kato N, Tullis T E. Numerical simulation of seismic cycles with a composite rate- and state-dependent friction law[J]. Bulletin of the Seismological Society of America, 2003, 93(2): 841-853. [64] Rice J, Ruina A. Stability of steady frictional slipping[J]. Journal of applied mechanics, 1983, 50(2): 343-349. [65] Byerlee J. Friction of rocks[J]. Pure and Applied Geophysics, 1978, 116(4-5): 615-626. [66] Raleigh C, Healy J. Bredehoeft J, An experiment in earthquake control at Rangely, Colorado[J]. Science, 1976, 191(4233): 1230-1237. [67] Marone C, Kilgore B. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones[J]. Nature, 1993, 362(6421): 618-621. [68] Tanikawa W, Shimamoto T. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake[J]. Journal of Geophysical Research, 2009, 114(B1). [69] Johnson K M, Bürgmann R, Larson K. Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake[J]. Bulletin of the Seismological Society of America, 2006, 96(4B): S321-S338. [70] Dieterich J H. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics, 1992, 211(1): 115-134. [71] Stuart W D, Tullis T E. Fault model for preseismic deformation at Parkfield, California[J]. Journal of Geophysical Research, 1995, 100(B12): 24079-24099. [72] Tse S T, Rice J R. Crustal earthquake instability in relation to the depth variation of frictional slip properties[J]. Journal of Geophysical Research, 1986, 91(B9): 9452-9472. [73] Marone C, Raleigh C B, Scholz C. Frictional behavior and constitutive modeling of simulated fault gouge[J]. Journal of Geophysical Research, 1990, 95(B5): 7007-7025. [74] Kaneko Y, Avouac J P, Lapusta N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling[J]. Nature Geoscience, 2010, 3(5): 363-369. [75] Kato N. Interaction of slip on asperities: Numerical simulation of seismic cycles on a two-dimensional planar fault with nonuniform frictional property[J]. Journal of Geophysical Research, 2004, 109(B12). [76] Ma K F, Song T R A, Lee S J, et al. Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, Earthquake (MW7.6)—Inverted from teleseismic data[J]. Geophysical Research Letters, 2000, 27(20): 3417-3420. [77] Ide S, Baltay A, Beroza G C. Shallow dynamic overshoot and energetic deep rupture in the 2011 MW9.0 Tohoku-Oki earthquake[J]. Science, 2011, 332(6036): 1426-1429. [78] Simons M, Minson S E, Sladen A, et al. The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries[J]. Science, 2011, 332(6036): 1421-1425. [79] Noda H, Lapusta N. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature, 2013, 493(7433): 518-521. [80] Yoshioka S, Mikumo T, Kostoglodov V, et al. Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion[J]. Physics of the Earth and Planetary Interiors, 2004, 146(3): 513-530. [81] Hashimoto C, Noda A, Matsu M. The MW 9.0 northeast Japan earthquake: total rupture of a basement asperity[J]. Geophysical Journal International, 2012, 189(1): 1-5. [82] Loveless J P, Meade B J. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan[J]. Journal of Geophysical Research, 2010, 115(B2). [83] 赵静, 江在森, 武艳强, 等. 汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究[J]. 地球物理学报, 2012, (9): 2963-2972. [84] 赵静, 武艳强, 江在森, 等. 芦山地震前龙门山断裂带闭锁程度与变形动态特征研究[J]. 地震学报, 2013, (5): 681-691. [85] Cavalié O, Lasserre C, Doin M P, et al. Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 2008, 275(3): 246-257. [86] Konca A O, Avouac J P, Sladen A, et al. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence[J]. Nature, 2008, 456(7222): 631-635. [87] Perfettini H, Avouac J P, Tavera H, et al. Seismic and aseismic slip on the Central Peru megathrust[J]. Nature, 2010, 465(7294): 78-81. [88] Klotz J, Khazaradze G, Angermann D, et al. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes[J]. Earth and Planetary Science Letters, 2001, 193(3): 437-446. [89] Moreno M, Melnick D, Rosenau M, et al. Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake[J]. Earth and Planetary Science Letters, 2011, 305(3): 413-424. [90] Parsons T, Ji C, Kirby E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin[J]. Nature, 2008, 454(7203): 509-510. [91] Stein R S, Barka A A, Dieterich J H. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering[J]. Geophysical Journal International, 1997, 128(3): 594-604. [92] Toda S, Lin J, Meghraoui M, et al. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 2008, 35(17). [93] Harris R A. Introduction to special section: Stress triggers, stress shadows, and implications[J]. Journal of Geophysical Research, 1998, 103(B10): 24347-24358. [94] Das S, Scholz C H. Off-fault aftershock clusters caused by shear stress increase?[J]. Bulletin of the Seismological Society of America, 1981, 71(5): 1669-1675. [95] 邵志刚, 傅容珊, 薛霆境, 等. 库仑应力变化与余震对应关系的初步探讨—以集集地震为例[J]. 地球物理学进展, 2009, (2): 367-374. [96] Harris R A, Simpson R W. In the shadow of 1857-the effect of the Great Ft. Tejon Earthquake on subsequent earthquakes in southern California[J]. Geophysical Research Letters, 1996, 23(3): 229-232. [97] 傅征祥, 刘桂萍, 陈棋福. 青藏高原北缘海原、 古浪、 昌马大地震间相互作用的动力学分析[J]. 地震地质, 2001, (1): 35-42. [98] Toda S, Lin J, Stein R. Using the 2011 M=9.0 Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure[J]. Earth Planets and Space, 2011, 63: 725-730. [99] 单斌, 熊熊, 郑勇, 等. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化[J]. 中国科学, 2009, (5): 537-545. [100] 程佳, 刘杰, 甘卫军, 等. 1997年以来巴颜喀拉块体周缘强震之间的黏弹性触发研究[J]. 地球物理学报, 2011, (8): 1997-2010. [101] Deng J, Sykes L R. Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective[J]. Journal of Geophysical Research, 1997, 102(B5): 9859-9886. [102] Smith B, Sandwell D. Coulomb stress accumulation along the San Andreas Fault system[J]. Journal of Geophysical Research, 2003, 108(B6). [103] 徐晶, 邵志刚, 马宏生, 等. 鲜水河断裂带库仑应力演化与强震间关系[J]. 地球物理学报, 2013, (4): 1146-1158. [104] 徐晶, 邵志刚, 张浪平, 等. 断层面上库仑破裂应力变化的相关研究进展[J]. 地球物理学进展, 2013, (1): 132-145. [105] Hainzl S, Enescu B, Cocco M, et al. Aftershock modeling based on uncertain stress calculations[J]. Journal of Geophysical Research, 2009, 114(B5). [106] Cocco M, Hainzl S, Catalli F, et al. Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response[J]. Journal of Geophysical Research, 2010, 115(B5). [107] Console R, Murru M, Falcone G. Perturbation of earthquake probability for interacting faults by static Coulomb stress changes[J]. Journal of seismology, 2010, 14(1): 67-77. [108] Hashimoto C, Noda A, Sagiya T, et al. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2009, 2(2): 141-144. [109] Ohnaka M. Earthquake source nucleation: a physical model for short-term precursors[J]. Tectonophysics, 1992, 211(1): 149-178. [110] Das S, Scholz C. Theory of time-dependent rupture in the Earth[J]. Journal of Geophysical Research, 1981, 86(87): 6039-6051. [111] Andrews D. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research, 1976, 81(32): 5679-5687. [112] 何昌荣. 断层上的地震成核过程与前兆模拟研究[J]. 中国地震, 2000, (1): 4-16. [113] Dodge D A, Beroza G C, Ellsworth W. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process[J]. Journal of Geophysical Research, 1996, 101(B10): 22371-22392. [114] Hurukawa N. The 1995 Off-Etorofu earthquake: Joint relocation of foreshocks, the mainshock, and aftershocks and implications for the earthquake nucleation process[J]. Bulletin of the Seismological Society of America, 1998, 88(5): 1112-1126. [115] Ellsworth W, Beroza G. Seismic evidence for an earthquake nucleation phase[J]. Science, 1995, 268(5212): 851. [116] 马胜利, 马瑾, 刘力强. 地震成核相的实验证据[J]. 科学通报, 2002, (5): 387-391. [117] Bouchon M, Karabulut H, Aktar M, et al. Extended nucleation of the 1999 MW7.6 Izmit earthquake[J]. Science, 2011, 331(6019): 877-880. |
[1] | 王琼, 王海涛. 周边地区强震对新疆境内中强地震活动的影响分析[J]. 地震, 2009, 29(2): 88-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||