地震 ›› 2016, Vol. 36 ›› Issue (4): 1-21.
• • 下一篇
邵志刚, 王芃, 李海艳
收稿日期:
2016-07-01
发布日期:
2020-07-03
作者简介:
邵志刚(1977-), 男, 山东临沂人, 研究员, 主要从事地球动力学与地震活动性等研究。
基金资助:
SHAO Zhi-Gang, WANG Peng, LI Hai-Yan
Received:
2016-07-01
Published:
2020-07-03
摘要: 2011年3月11日, 日本海沟发生的9级地震造成重大人员伤亡, 受到社会普遍关注, 本文基于此次日本9级地震相关研究结果, 尝试从不同侧面分析此次地震的观测、 现象和认识, 主要包括如下几点: ① 此次地震发生在太平洋板块西北边界上日本海沟俯冲带上, 同震破裂可能存在深浅两个位错集中区, 较深的位错集中区位错量相对较小, 但历史上7级地震多发; 而较浅的位错集中区位错较大, 但历史上强震活动相对较弱; ② 基于GPS观测资料为约束的相关断层运动研究结果表明, 日本海沟断层运动背景以大范围稳定闭锁为主(闭锁区空间尺度与同震破裂尺度相当), 自2003年日本北海道8级地震后日本海沟地区断层运动开始出现扰动, 2008年以后有几次7级左右地震震后余滑分布明显比主震位错量要大, 之后分别于2008年和2011年观测到显著慢滑移事件, 最后分别于2011年3月9日和3月11日发生7级前震和9级主震, 震前日本海沟俯冲带断层运动变化过程比较清楚; ③ 可能是由于监测的原因, 传统上的前兆观测并未出现显著异常, 其震前异常主要为: 部分地震活动参数表明强震震源区震前应力状态相对较高、 区域地表运动速率的短期异常等; ④ 对于震源区物理性质的分析引起了更多的科学问题, 例如, 震源区介质物性是否与周边存在显著差异、 断层摩擦性质是否决定了发震能力和破裂过程、 震前断层运动是否存在预滑、 震前深部流体是否影响到震源区断层运动等。 他山之石可以攻玉, 希望本文对地震预测预报基础研究工作能起到抛砖引玉的作用。
中图分类号:
邵志刚, 王芃, 李海艳. 2011年日本MW9.0地震相关研究综述[J]. 地震, 2016, 36(4): 1-21.
SHAO Zhi-Gang, WANG Peng, LI Hai-Yan. Review on Researches Associated with the 2011MW9.0 Tohoku-Oki Earthquake[J]. EARTHQUAKE, 2016, 36(4): 1-21.
[1] Stein S, Geller R J, Liu M. Why earthquake hazard maps often fail and what to do about it[J]. Tectonophysics, 2012, 562-563. [2] Hayes G P. Rapid source characterization of the 2011 MW9.0 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 529-534. [3] Feng G, Jonsson S. Shortcomings of InSAR for studying megathrust earthquakes: the case of the MW9.0 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2012, 39, L10305. [4] 刁法启, 熊熊, 倪四道, 等. 利用GPS位移反演日本MW9.0仙台地震及MW7.9强余震静态位错模型[J]. 科学通报, 2011, 56(24): 1999-2005. [5] 刁法启, 熊熊, 郑勇. MW9.0日本Tohoku大地震静态位错模型: 陆地GPS资料和海底GPS/Acoustic资料联合反演的结果[J]. 科学通报, 2012, 57(18): 1676-1683. [6] Wang C, Ding X, Shan X, et al. Slip distribution of the 2011 Tohoku earthquake derived from joint inversion of GPS, InSAR and seafloor GPS/acoustic measurements[J]. Jounal of Asian Earth Sciences, 2012, 57: 128-136. [7] Avouac J P. The lessons of Tohoku-Oki[J]. Nature, 2011, 475: 300-301. [8] Bletery Q, Sladen A, Delouis B, et al. A detailed source modle for the MW9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records[J]. Journal of Geophysical Research, 2014, 119: 7636-7653. [9] Shao G, Li X, Ji C, et al. Focal mechanism and slip history of the 2011 MW9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves[J]. Earth Planets Space, 2011, 63: 559-564. [10] Yoshida Y, Ueno H, Muto D, et al. Source process of the 2011 off the Pacific coast of Tohoku earthquake with the combination of teleseismic and strong motion data[J]. Earth Planets Space, 2011, 63: 565-569. [11] Hwang R D. First-order rupture features of the 2011 MW9.0 Tohoku (Japan) earthquake from surface waves[J]. Journal of Asian Earth Science, 2014, 81: 20-27. [12] Ide S, Baltay A, Beroza G C. Shallow dynamic overshoot and energetic deep rupture in the 2011 MW9.0 Tohoku-Oki earthquake[J]. Sceince, 2011, 332: 1426-1429. [13] Koketsu K, Yokota Y, Nishimura N, et al. A unified source model for the Tohoku earthquake[J]. Earth and Planetary Science Letters, 2011, 310: 480-487. [14] Meng L, Inbal A, Ampuero J P. A window into the complexity of the dynamic rupture of the 2011 MW9 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38, L00G07. [15] Yao H, Gerstoft P, Shearer P M, et al. Compressive sensing of the Tohoku-Oki MW9.0 earthquake: frequency-dependent rupture modes[J]. Geophysical Research Letters, 2011. 38, L20310. [16] Yagi Y, Nakao A, Kasahara A. Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid bach-projection method[J]. Earth and Planetary Science Letters, 2012, 353-356, 94-101. [17] Nakahara H. Envelope inversion analysis for high-frequency seismic energy radiation from the 2011 MW9.0 off the Pacific coast of Tohoku earthquake[J]. Bulletin of the Seismological Society of America , 2013, 103: 1348-1359. [18] Wang D and Mori J. Frequency-dependent energy radiation and fault coupling for the 2010 MW8.8 Maule, Chile, and 2011 MW9.0 Tohoku, Japan, earthquakes[J]. Geophysical Research Letters, 2011, 38, L22308. [19] Hirose F, Miyaoka K, Hayashimoto N, et al. Outline of the 2011 off the Pacific coast of Tohoku earthquake (MW9.0)-seismicity: foreshocks, mainshock, aftershocks, and induced activity[J]. Earth Planets Space, 2011, 63: 513-518. [20] Kanamori H. Seismic and aseismic slip along subduction zones and their tectonic implications. In Island Arcs, Deep Sea Trenches and Back Arc Basins (eds. M Talwani & W C Pitman III), American Geophyssical Union, 1977, 163-174. [21] Taira A. Tectonic evolution of the Japanese island arc system[J]. Annual Review of Earth and Planetary Sciences, 2001, 29: 109-134. [22] 中国地震局监测预报司. 2007. 亚洲地震概要[M]. 北京: 地震出版社. [23] Chen P F, Bina C R, Okal E A. A global survey of stress orientaions in subducting slabs as revealed by intermediate-depth earthquakes[J]. Geophysical Journal International, 2004, 159: 721-733. [24] Kanamori H, Miyazawa M, Mori J. Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms[J]. Earth Planets Space, 2006, 58: 1533-1541. [25] Yamano M, Hamamoto H, Kawada Y, et al. Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate[J]. Earth and Planetary Science Letters, 2014, 407: 196-204. [26] Nishikawa T and Ide S. Earthquake size distribution in subduction zones linked to slab buoyancy[J]. Nature Geoscience, 2014, 7: 904-908. [27] Herrendorfer R, Dinther Y v, Gerya T, et al. Earthquake supercycle in subduction zones controlled by the width of the seismogenic zone[J]. Nature Geoscience, 2015, 8(6): 471-474. [28] Kita S, Okada T, Hasegawa A, et al. Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido northeastern Japan[J]. Tectonophysics, 2010, 496: 68-82. [29] Matsubara M, Obara K. The 2011 off the Pacific coast of Tohoku eartqhauek related to a strong velocity gradient with the Pacific plate[J]. Earth Planets Space, 2011, 63: 663-667. [30] Tian Y, Liu L. Geophysical properties and seismotectonics of the Tohoku forearc region[J]. Journal of Asian Earth Sciences, 2013, 64: 235-244. [31] Zhao D, Huang Z, Umino N et al. Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (MW9.0)[J]. Geophysical Research Letters, 2011, 38, L17308. [32] Yamamoto Y, Hino R, Suzuki K et al. Spatial heterogeneity of the mantle wedge structure and interplate coupling in the NE Japan forearc region[J].Geophysical Research Letters, 2008, 35, L23304. [33] Ye L, Lay T, Kanamori H. Ground shaking and seismic source spectra for large earthquake around the megathrust fault offshore of nortreastern Honshu, Japan[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1221-1241. [34] Nishimura T, Hirasawa T, Miyazaki S, et al. Temporal change of interpolate coupling in northeastern Japan during 1995—2002 estimated from continuous GPS observations[J]. Geophysical Journal International, 2004, 157: 901-916. [35] Hashimoto C, Noda A, Sagiya T, et al. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion[J]. Nature Geoscience, 2009, 2: 141-144. [36] Loveless J P, Meade B J. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan[J]. Journal of Geophysical Research, 2010, 115(B2). [37] Mazzotti S, Pichon X L, Henry P, et al. Full interseismic locking of Nankai and Japan-west Kurile subduction zones: an analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS[J]. Journal of Geophysical Research, 2000, 105(B6): 13159-13177. [38] Loveless J P, Meade B J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW=9.0 Tohoku-oki earthquake[J]. Geophysical Research Letters, 2011, 38. [39] Kodaira S, No T, Nakamura Y, et al. Coseismic fault rupture at the trench axis during the 2011 Tohoku-Oki earthquake[J]. Nature Geoscience, 2012, 5: 646-650. [40] Tsuji T, Kawamura K, Kanamatsu T, et al. Extension of continental crust by anelastic deformation during the 2011 Tohoku-oki earthquake: the role of extensional faulting in the generation of a great tsunami[J]. Earth and Planetary Science Letters, 2013, 364: 44-58. [41] Heki K and Mitsui Y. Accelerated pacific plate subduction following interpolate thrust earthquake at the Japan trench[J]. Earth and Planetary Science Letters, 2013, 363: 44-49. [42] Ikuta R, Satomura M, Fujita A, et al. A small persistent locked area associated with the 2011 MW9.0 Tohoku-Oki earthquake, deduced from GPS data[J]. Journal of Geophysical Research, 2012, 117, B11408. [43] Suito H, Nishimura T, Tobita M, et al. Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku earthquake as inferred from GPS data[J]. Earth Planets Space, 2011, 63: 615-619. [44] Mavrommatis A P, Segall P, Johnson K M. A decadal-scale deformation transient prior to the 2011 MW9.0 Tohoku-oki earthquake[J]. Geophysical Research Letters, 2014, 41: 4486-4494. [45] Ito Y, Hino R, Kido M, et al. Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake[J]. Tectonophysics, 2013, 600: 14-26. [46] Sato M, Fujita M, Matsumoto Y, et al. Interplate coupling off northeastern Japan before the 2011 Tohoku-oki earthquake, inferred from seafloor geodetic data[J]. Journal of Geophysical Research, 2013, 118: 3860-3869. [47] Matsuzawa, T, Asano Y, Obara K. Very low frequency earthquakes off the Pacific coast of Tohoku, Japan[J]. Geophysical Research Letters, 2015, 42(11): 4318-4325. [48] Fujie G, Kasahara J, Hino R, et al. A significant relation between seismic activities and reflection intensities in the Japan Trench region[J]. Geophysical research letters, 2002, 29(7). [49] Katayama I, Terada T, Okazaki K, et al. Episodic tremor and slow slip potentially linked to permeability contrasts at the Moho[J]. Nature Geoscience, 2012, 5: 731-734. [50] Munekane H. Coseismic and early postseismic slips associated with the 2011 off the Pacific coast of Tohoku earthquake sequence: EOF analysis of GPS kinematic time series[J]. Earth Planets Space, 2012, 64: 1077-1091. [51] Ozawa S, Nishimura T, Suito H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 2011, 475(7356): 373-376. [52] Diao F, Xiong X, Wang R, et al. Overlapping post-seismic deformation processes: afterslip and viscoelastic relaxation following the 2011 MW9.0 Tohoku (Japan) earthquake[J]. Geophysical Journal International, 2014, 196. [53] Ohta Y, Hino R, Inazu D, et al. Geodetic constraints on afterslip characteristics following the March 9, 2011, Sanriku-oki earthquake, Japan[J]. Geophysical Research Letters, 2012, 39, L16304. [54] Shibazaki B, Matsuzawa T, Tsutsumi A, et al. 3D modeling of the cycle of a great Tohoku-oki earthquake, considering frictional behavior at low to high slip velocities[J]. Geophysical Research Letters, 2011, 38, L21305. [55] Uchida N, Matsuzawa T. Coupling coefficient, hierarchical structure, and earthquake cycle for the source area of the 2011 off the Pacific coast of Tohoku earthquake inferred from small repeating earthquake data[J]. Earth Planets Space, 2011, 63: 675-679. [56] Hori T, Miyazaki S. A possible mechanism of M9 earthquake generation cycles in the area of repeating M7~8 earthquakes surrounded by aseismic sliding[J]. Earth, planets and space, 2011, 63(7): 773-777. [57] Kato N, Yoshida S. A shallow strong patch model for the 2011 great Tohoku-oki earthquake: A numerical simulation[J]. Geophysical Research Letters, 2011, 38(7). [58] Tse S, Rice J. Crustal earthquake instability in relation to the depth variation of friction slip properties[J]. Journal of Geophysical Research, 1986, 91: 9452-9472. [59] Scholz C H. Earthquakes and friction laws s[J]. Nature, 1998, 391: 37-42. [60] Marone C. Laboratory-derived friction and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences , 1998, 26: 643-696. [61] Yamaoka K. Earthquakes mechanism and prediction. 2007. http:∥www.soi.wide.ad.jp. [62] Noda H, Lapusta N. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature, 2013, 493(7433): 518-521. [63] Koyama J, Yoshizawa K, Yomogida K, et al. Variability of megathrust earthquakes in the world revealed by the 2011 Tohoku-oki earthquake[J]. Earth Planet Space, 2012, 64: 1189-1198 [64] Tichelaar B W, Ruff L J. Depth of seismic coupling along subduction zones[J]. Journal of Geophysical Research, 1993, 98(B2): 2017-2037. [65] Remitti F, Smith S A F, Mittempergher S, et al. Frictional properties of fault zone gouges from the J-FAST drilling project (MW9.0 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2015, 42: 2691-2699. [66] Koge H, Fujiwara T, Kodaira S et al. Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: an inference from topographic variation[J]. Earth Planets and Space, 2014, 66: 153. [67] Katsumata K. A long-term seismic quiescence started 23 years before the 2011 off the Pacific coast of Tohoku eartqhuqake(M=9.0)[J]. Earth Planet Space, 2011, 63: 709-712. [68] Ogata Y. Detection of precursory relative quiescence before great earthquakes through a statistical model)[J]. Journal of Geophysical Research, 1992, 97: 19845-19871. [69] 薛艳, 刘杰, 余怀忠, 等. 2011年日本本州东海岸附近9.0级地震活动特征[J]. 科学通报, 2012, 57(8): 634-640. [70] Matsumura S. Discrimination of a preparatory stage leading to M7 characteristic earthquakes off Ibaraki Prefecture, Japan[J]. Journal of Geophysical Research, 2010, 115. [71] Nagao T, Takeuchi A, Nakamura K. A new algorithm for detection of seismic quiescence: introduction of RTM algorithm, a modified RTL algorithm[J]. Earth Planets Space, 2011, 63: 182-183. [72] Sarlis N V, Skordas E S, Varotsos P A, et al. Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan[J]. Proceedings of the National Academy of Sciences, 2013, 110: 13734-13738. [73] Kawamura M, Wu Y, Kudo T et al. Precursory migration of anomalous seismic activity revealed by the pattern informatics method: a case study of the 2011 Tohoku earthquake, Japan[J]. Bulletin of the Seismological Society of America, 2013, 103: 1171-1180. [74] Bouchon M, Durand V, Marsan D et al. The long precursory phase of most large interplate earthquakes[J]. Nature geoscience, 2013, 6: 299-302. [75] Uyeda S. Current affairs in earthquake prediction in Japan[J]. Journal of Asian earth sciences, 2015, 114: 431-434. [76] Ando R, Imanishi K. Possibility of MW9.0 mainshock triggered by diffusional propagation of after-slip from MW7.3 foreshock[J]. Earth Planets Space, 2011, 63: 767-771. [77] Ide S, Aochi H. Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake[J]. Tectonophysics, 2013, 600: 1-13. [78] Tanaka S. Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (MW9.1)[J]. Geophysical Research Letters, 2012, 39, L00G26. [79] Tormann T, Enescu B, Woessner J et al. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake[J]. Nature Geoscience, 2015, 8: 152-158. [80] Narteau C, Byrdina S, Shebalin P et al. Common dependence on stress for the two fundamental laws of statistical seismology[J]. Nature, 2009, 462: 642-645. [81] Leonard R S, Barnes J R A. Observation of ionospheric diturbaces following the Alaska earthquake[J]. Journal of Geophysical Research, 1965, 70: 1250-1253. [82] 姚宜斌, 陈鹏, 吴寒, 等. 2011年3月11日日本地震震前电离层异常变化分析[J]. 科学通报, 2012, 57(5): 355-365. [83] Chen C H, Wen S, Liu J Y, et al. Surface displacements in Japan before the 11 March 2011 M9.0 Tohoku-Oki earthquake[J]. Journal of Asian Earth Sciences, 2013, 80: 165-171. [84] Kanamori H. Putting seismic research to most effective use[J]. Nature, 2012, 483: 147-148. [85] Ohta Y, Kobayashi T, Tsushima H et al. Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: application to the 2011 Tohoku-Oki earthquake (MW9.0)[J]. Journal of Geophysical Research, 2012, 117. [86] Suppasri A, Shuto N, Imamura F et al. Lessons learned from the 2011 great east Japan tsunami: performance of tsunami countermeasures, coastal buildings, and tsunami evacuation in Japan[J]. Pure and Applied Geophysics, 2013, 170: 993-1018. [87] Wartman J, Dunham L, Tiwari B et al. Landslides in Eastern Honshu induced by the 2011 Tohoku earthquake[J]. Bulletin of the Seismological Society of America, 2013: 1503-1521. [88] Hasegawa A, Yoshida K, Okada T. Nearly complete stress drop in the 2011 MW9.0 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 703-707. [89] Suzuki K, Hino R, Ito Y, et al. Seismicity near the hypocenter of the 2011 off the Pacific coast of Tohoku earthquake deduced by using ocean bottom seismographic data[J]. Earth Planets Space, 2012, 64: 1125-1135. [90] Shinohara M, Machida Y, Yamada T, et al. Precise aftershock distribution of the 2011 off the Pacific coast of Tohoku earthquake revealed by ocean-bottom seismometer network[J]. Earth Planets Space, 2012, 64: 1137-1148. [91] Hasegawa A, Yoshida K, Asano Y, et al. Change in stress field after the 2011 great Tohoku-Oki earthquake[J]. Earth and Planetary Science Letters, 2012, 355-356: 231-243. [92] Hardebeck J L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes[J]. Geophysical Research Letters, 2012, 39, L21313. [93] Hiratsuka S, Sato T. Alteration of stress field brought about by the occurrence of the 2011 off the Pacific coast of Tohoku earthquake (MW9.0)[J]. Earth Planets Space, 2011, 63: 681-685. [94] Lay T, Ammon C J, Kanamori H, et al. Outer trench-slope faulting and the 2011 MW9.0 off Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 713-718. [95] Okada T, Yoshida K, Ueki S, et al. Shallow inland earthquakes in NE Japan possibly triggered by the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 749-754. [96] Ishibe T, Shimazaki K, Satake K, et al. Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 731-735. [97] Toda S, Lin J, Stein R S. Using the 2011 MW9.0 off the Pacific coast of Tohoku earthquake to test the Coulomb stress triggering hypothesis and to calculate fauts brought closer to failure[J]. Earth Planets Space, 2011, 63: 725-730. [98] Yukutake Y, Honda R, Harada M, et al. Remotely-triggered seismicity in the Hakone volcano following the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space, 2011, 63: 737-740. [99] Gardonio B, Marsan D, Lengline O, et al. Changes in seismicity and stress loading on subduction faults in the Kanto region, Japan, 2011-2014[J]. Journal of Geophysical Research, 2015, 120: 2616-2626. [100] Ishibe T, Satake K, Sakai S, et al. Correlation between Coulomb stress imparted by the 2011 Tohoku-Oki earthquake and seismicity rate change in Kanto, Japan[J]. Geophysical Journal International, 2015, 201: 112-134. [101] Enescu B, Aoi S, Toda S, et al. Stress perturbations and seismic response associated with the 2011 M9.0 Tohoku-oki earthquake in and around the Tokai seismic gap, central Japan[J]. Geophysical Research Letters, 2012, 39, L00G28. [102] Toshiya F, Shuichi K, Tetsuo N, et al. The 2011 Tohoku-Oki earthquake: displacement reaching the Trench axis[J]. Sceince, 2011, 334: 1240. [103] Ito Y, Tsuji T, Osada Y, et al. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2011, 38, L00G05. [104] Watanabe S, Sato M, Fujita M, et al. Evidence of viscoelastic deformation following the 2011 Tohoku-Oki earthquake revealed from seafloor geodetic observation[J]. Geophysical Research Letters, 2014, 41(16): 5789-5796. [105] Tanaka Y, Heki K. Long- and short-term postseismic gravity changes of megathrust earthquakes from satellite gravimetry[J]. Geophysical Research Letters, 2014, 41: 5451-5456. [106] Pollitz F F, Burgmann R, Banerjee P. Geodetic slip model of the 2011 M9.0 Tohoku earthquake[J]. Geophysical Research Letters, 2011, 38, L00G08. [107] Shestakov N V, Takahashi H, Ohzono M, et al. Analysis of the far-field crustal displacements caused by the 2011 Great Tohoku earthquake inferred from continuous GPS observations[J]. Tectonophysics, 2012, 524: 76-86. [108] Wang M, Li Q, Wang F, et al. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System[J]. Chinese Science Bulletin, 2011, 56(23): 2419-2424. [109] Zhao B, Wang W, Yang S, et al. Far field deformation analysis after the MW9. 0 Tohoku earthquake constrained by cGPS data[J]. Journal of seismology, 2012, 16(2): 305-313. [110] 黄珍祥, 尹弘植, 黄鹤, 等. 2011年日本东北地区太平洋近海地震对亚洲板块及韩国大地控制网的影响分析[J]. 地球物理学报, 2012, 55(6): 1884-1893. [111] Rolland L M, Lognonné P, Astafyeva E, et al. The resonant response of the ionosphere imaged after the 2011 off the Pacific coast of Tohoku Earthquake[J]. Earth, planets and space, 2011, 63(7): 853-857. [112] Tsai H, Liu J, Lin C, et al. Tracking the epicenter and the tsunami origin with GPS ionosphere observation[J]. Earth Planets Space, 2011, 63: 859-862. [113] Uchida N, Shimamura K, Matsuzawa T, et al. Postseismic response of repeating earthquakes around the 2011 Tohoku-oki earthquake: Moment increases due to the fast loading rate[J]. Journal of Geophysical Research, 2015, 120(1): 259-274. [114] Hitoshi H, Hisanori K, Bogdan E, et al. Recurrent slow slip event likely hastened by the 2011 Tohoku earthquake, PANS, 2013, doi:10.3969/j.issn.0235-4975.2013.02.003 [115] 王凡, 沈正康, 王阎昭, 等. 2011年3月11日日本宫城MW9.0级地震对其周边地区火山活动的影响[J]. 科学通报, 2011, 56(14): 1080-1083. [116] Chao K, Peng Z, Gonzalez-Huizar H, et al. A global search for triggered tremor following the 2011 MW9.0 Tohoku earthquake[J]. Bulletin of the Seismological Society of America, 2013, 103(2B): 1551-1571. [117] To A, Obana K, Sugioka H, et al. Small size very low frequency earthquakes in the Nankai accretionary prism, following the 2011 Tohoku-Oki earthquake[J]. Physics of the Earth and Planetary Interiors, 2015, 245: 40-51. [118] Sato M, Ishikawa T, Ujihara N, et al. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake[J]. Science, 2011, 332(6036), 1395. [119] Chu R, Wei S, Helmberger D V, et al. Initiation of the great MW9.0 Tohoku-Oki earthquake[J]. Earth and Planetary Science Letters, 2011, 308(3): 277-283. [120] Field E. H. A summary of previous Working Group on California Earthquake Probabilities[J]. Bulletin of the Seismological Society of America, 2007, 97(4), 1033-1053. [121] Working Group on California Earthquake Probabilities (WGCEP), Earthquake probabilities in the San Francisco Bay Region: 2002-2031, U. S. Geol. Surv. Open-File Rept., 2003, 03-214. [122] Engdahl E R, van der Hilst R, Buland R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination[J]. Bulletin of the Seismological Society of America, 1998, 88(3): 722-743. [123] Headquarters for earthquake research promotion, National seismic hazard for Japan (2005) [124] Jordan T H. Earthquake predictability, brick by brick[J]. Seismological Research Letters, 2006, 77(1): 3-6. [125] Nanjo K Z, Tsuruoka H, Hirata N, et al. Overview of the first earthquake forecast testing experiment in Japan[J]. Earth Planets Space, 2011, 63: 159-169 [126] Toda S, Enescu B. Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast[J]. Earth Planets Space, 2011, 63: 171-185. [127] Lombardi A M, Marzocchi W. The double branching model for earthquake forecast applied to the Japanese seismicity[J]. Earth Planets Space, 2011, 63: 187-195. [128] Nanjo K Z. Earthquake forecast for the CSEP Japan experiment based on the RI algorithm[J]. Earth Planets Space, 2011, 63: 261-274. [129] Tsuruoka H, Hirata N, Schorlemmer D, et al. CSEP Testing Center and the first results of the earthquake forecast testing experiment in Japan[J]. Earth Planets Space, 2012, 64: 661-671. |
[1] | 席继楼, 孙汉荣, 薛兵, 高尚华, 王同利, 崔博闻, 华培学, 王倩倩, 李珍. 地震监测站网评估指标体系研究[J]. 地震, 2022, 42(4): 149-158. |
[2] | 陈伟, 刘泰, 佘雅文, 付广裕. 利用同震和震后位移数据联合反演2011年日本MW9.0地震同震断层滑动[J]. 地震, 2021, 41(4): 121-135. |
[3] | 周连庆, 赵翠萍, 张捷, 车时. 中国地震科学实验场人工智能实时地震监测分析系统的应用与展望[J]. 地震, 2021, 41(3): 1-21. |
[4] | 蒋雨函, 高小其, 王阳洋, 张磊. 中国新疆北天山和台湾南部陆地泥火山研究进展[J]. 地震, 2020, 40(3): 65-82. |
[5] | 张琰, 吴忠良, 李佳威. 地震预测预报研究议程的演变: 文献计量分析的启示[J]. 地震, 2019, 39(2): 159-173. |
[6] | 石富强, 邵志刚, 朱琳, 张竹琪, 邵辉成. 南美西海岸(智利)地震科学研究回顾及其对地震监测预报的启示[J]. 地震, 2019, 39(1): 155-170. |
[7] | 邵志刚, 王芃. 2008年汶川8.0级地震对地震预测研究的启示思考[J]. 地震, 2018, 38(2): 1-10. |
[8] | 刘泰, 付广裕, 苏小宁. 利用粘弹性球体位错理论研究2011年日本MW9.0地震引起的震后位移时空变化[J]. 地震, 2017, 37(3): 1-11. |
[9] | 王霞, 宋美琴, 李丽, 罗勇. 山西地区不同时段地震目录最小完整性震级研究[J]. 地震, 2014, 34(2): 82-88. |
[10] | 郑重, 郝春月, 沙成宁. 格尔木地震台阵勘址数据分析与台阵布局设计[J]. 地震, 2014, 34(2): 12-21. |
[11] | 金维浚, 张衡, 张文辉, 段心标, 刘伟. 微地震监测技术及应用[J]. 地震, 2013, 33(4): 84-96. |
[12] | 章静, 李晓杰, 杨桂存, 丁秋琴, 李璐彬. 援印尼地震监测台网及其自动定位系统效能评估[J]. 地震, 2013, 33(2): 132-141. |
[13] | 孟国杰, Linlin Ge, 伍吉仓, 戴娅琼. 雷达干涉测量在地震形变研究中的应用[J]. 地震, 2012, 32(2): 105-113. |
[14] | 顾国华. 地壳形变与地震前兆探索回顾和展望[J]. 地震, 2012, 32(2): 22-30. |
[15] | 敖雪明, 龙海英, 王桂岭. 新疆天山近7级地震前震群活动的时空分布演化特征[J]. 地震, 2010, 30(4): 124-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||