欢迎访问《地震》,

地震 ›› 2017, Vol. 37 ›› Issue (1): 10-19.

• • 上一篇    下一篇

重力数据三维共轭梯度聚焦反演及应用

刘希康1,2,丁志峰2,李媛1,张双喜1,王同庆1   

  1. 1.中国地震局第一监测中心, 天津 300180;
    2.中国地震局地球物理研究所, 北京 100081
  • 收稿日期:2016-04-12 发布日期:2019-08-14
  • 作者简介:刘希康(1988-), 男, 新疆伊犁人, 助理工程师, 在读博士研究生, 主要从事重力和地震学等研究。
  • 基金资助:
    中国地震局第一监测中心主任基金项目(FMC2015005),科技公益性行业科研专项(No.201308011)

3D Focusing Inversion of Gravity Data based on Conjugate Gradient and its Application

LIU Xi-kang1,2,DING Zhi-feng2,LI Yuan1   

  1. 1.First Crust Monitoring and Application Center, CEA, Tianjin 300180, China;
    2.Institute of Geophysics, CEA, Beijing 100081, China
  • Received:2016-04-12 Published:2019-08-14

摘要: 基于共轭梯度算法对欠定线性目标函数进行求解。 为改善目标函数的多解性、 消除多余构造信息影响, 引入粗糙度系数矩阵; 为克服“趋肤效应”, 更好地反映地质体的真实形态, 在模型目标函数中引入深度加权函数; 为更好的反映地质体的某些尖锐构造和边界, 本文对目标函数添加了基于最小支撑泛函的聚焦反演约束。 通过对多种模型的计算, 验证了该方法具有较好的有效性和稳定性, 并将该方法应用于实际重力资料地下密度反演中去, 得到了较好的反演结果。

关键词: 重力场, 共轭梯度, 深度加权函数, 聚焦反演

Abstract: We solve underdetermined linear objective function based on conjugate gradient algorithm. In order to improve the multiplicity results of the objective function, and eliminate the influence of redundant structure information, the roughness has been introduced. In order to overcome the “skin effect”, the depth weighting function has also been added in the model objective function, and the minimum support function was also added in the objective function to better reflect the sharp features and tectonic boundary. Calculation of several models indicates that this method has good validity and stability. The proposed method was applied to the practical gravity data processing for inversion of 3D crust density, and obtained a good precision inversion results.

Key words: Gravity, Conjugate gradient, Depth weighting function, Focusing inversion

中图分类号: