[1] Peterson J. Observations and modeling of seismic background noise[R]. USGS Open-file Report, 1993.
[2] Ekstr m G. Time domain analysis of Earth’s long-period background seismic radiation[J]. Journal of Geophysical Research, 2001, 106(B11): 26483-26493.
[3] Bormann P, Engdahl B, Kind R. Seismic Signals and Noise[M]. Potsdam, Germany, 2009.
[4] Yang Y, Ritzwoller M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochemistry Geophysics Geosystems, 2008, 9(2): Q02008, doi:10.1029/2007GC001814.
[5] Lee W S, Lee J, Han S. Seismic Ambient Noise and its Applicability to Monitor Cryospheric Environment[M]. INTECH Open Access Publisher, 2013.
[6] Nawa K, Suda N, Fukao Y, et al. Incessant excitation of the Earth’s free oscillations[J]. Earth, planets and space, 1998, 50(1): 3-8.
[7] Tanimoto T. Excitation of normal modes by atmospheric turbulence: source of long-period seismic noise[J]. Geophysical Journal International, 1999, 136(2): 395-402.
[8] Sorrells G G, Mcdonald J A, Der Z A, et al. Earth motion caused by local atmospheric pressure changes[J]. Geophysical Journal International, 1971, 26(1-4): 83-98.
[9] Sorrells G G. A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field[J]. Geophysical Journal International, 1971, 26(1-4): 71-82.
[10] Rhie J, Romanowicz B. Excitation of Earth's continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature, 2004, 431(7008): 552-556.
[11] Rhie J, Romanowicz B. A study of the relation between ocean storms and the Earth’s hum[J]. Geochemistry Geophysics Geosystems, 2006, 7(10): 1-23.
[12] Tanimoto T. The oceanic excitation hypothesis for the continuous oscillations of the Earth[J]. Geophysical Journal International, 2005, 160(1): 276-288.
[13] Shapiro N M, Ritzwoller M H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica[J].Earth and Planetary Science Letters, 2004, 223(1-2): 213-224.
[14] Weaver R L. Information from seismic noise[J]. Science, 2005, 307(5715): 1568-1569.
[15] Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1615-1618.
[16] Zheng S, Sun X, Song X, et al. Surface wave tomography of China from ambient seismic noise correlation[J]. Geochemistry Geophysics Geosystems, 2008, 9(5): Q05020, doi:10.1029/2008GC001981.
[17] Sun X, Song X, Zheng S, et al. Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography[J]. Earthquake Science, 2010, 23(5): 449-463.
[18] Xu Z J, Song X, Zheng S. Shear velocity structure of crust and uppermost mantle in China from surface wave tomography using ambient noise and earthquake data[J]. Earthquake Science, 2013, 26(5): 267-281.
[19] Bao X, Song X, Li J. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 2015, 417(1): 132-141.
[20] Zhou L, Xie J, Shen W, et al. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophysical Journal International, 2012, 189(3): 1565-1583.
[21] 郑现, 赵翠萍, 周连庆, 等. 中国大陆中东部地区基于背景噪声的瑞利波层析成像[J]. 地球物理学报, 2012, 55(06): 1919-1928.
[22] Fang L, Wu J, Ding Z, et al. High resolution Rayleigh wave group velocity tomography in North China from ambient seismic noise[J]. Geophysical Journal International, 2010, 181(2): 1171-1782.
[23] 唐有彩, 陈永顺, 杨英杰, 等. 华北克拉通中部地区背景噪声成像[J]. 地球物理学报, 2011, 54(8): 2011-2022.
[24] Zheng Y, Shen W, Zhou L, et al. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography[J]. Journal of Geophysical Research, 2011, 116(B12): B12312, doi:10.1029/2011JB008637.
[25] Yao H, Van Der Hilst R D, De Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis--I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
[26] Yang Y, Zheng Y, Chen J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochemistry Geophysics Geosystems, 2010, 11(8): Q08010.
[27] Zheng X, Zhao C, Zhou L, et al. 3D Shear-Wave Velocity Structure beneath the Southeastern Tibetan Plateau From Ambient Noise[J]. Bull Seismol Soc Am, 2015, 1(1): 1-15.
[28] Wang W, Wu J, Fang L, et al. S wave velocity structure in southwest China from surface wave tomography and receiver functions[J]. Journal of Geophysical Research, 2014, 119(2): 1061-1078.
[29] 唐小勇, 范文渊, 冯永革, 等. 新疆地区环境噪声层析成像研究[J]. 地球物理学报, 2011, 54(8): 2042-2049.
[30] Yao H, Van Der Hilst R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet[J]. Geophysical Journal International, 2009, 179(2): 1113-1132.
[31] Lin F C, Moschetti M P, Ritzwoller M H. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1): 281-298.
[32] Lin F-C, Ritzwoller M H, Yang Y, et al. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States[J]. Nat Geosci, 2011, 4(1): 55-61.
[33] Brenguier F, Campillo M, Hadziioannou C, et al. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations[J]. Science, 2008, 321(5895): 1478-1482.
[34] Brenguier F, Shapiro N M, Campillo M, et al. Towards forecasting volcanic eruptions using seismic noise[J]. Nat Geosci, 2008, 1(2): 126-130.
[35] Prieto G A, Beroza G C. Earthquake ground motion prediction using the ambient seismic field[J]. Geophys Res Lett, 2008, 35(14): L14304.
[36] Tsai V C. On establishing the accuracy of noise tomography travel-time measurements in a realistic medium[J]. Geophysical Journal International, 2009, 178(3): 1555-1564.
[37] Tsai V C. Understanding the amplitudes of noise correlation measurements[J]. Journal of Geophysical Research, 2011, 116(B9): B09311.
[38] Cupillard P, Capdeville Y. On the amplitude of surface waves obtained by noise correlation and the capability to recover the attenuation: a numerical approach[J]. Geophysical Journal International, 2010, 181(3): 1687-1700.
[39] Cupillard P, Stehly L, Romanowicz B. The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise[J]. Geophysical Journal International, 2011, 184(3): 1397-1414.
[40] Lin F C, Ritzwoller M H, Shen W. On the reliability of attenuation measurements from ambient noise cross-correlations[J]. Geophys Res Lett, 2011, 38(11): L11303-L11308.
[41] Prieto G A, Denolle M, Lawrence J F, et al. On amplitude information carried by the ambient seismic field[J]. CR Geosci, 2011, 343(8): 600-614.
[42] Prieto G A, Lawrence J F, Beroza G C. Anelastic Earth structure from the coherency of the ambient seismic field[J]. Journal of Geophysical Research, 2009, 114(B7): B07303.
[43] Lawrence J F, Prieto G A. Attenuation tomography of the western United States from ambient seismic noise[J]. Journal of Geophysical Research, 2011, 116(B6): B06302.
[44] Weaver R L. On the amplitudes of correlations and the inference of attenuations, specific intensities and site factors from ambient noise[J]. Comptes rendus - Geoscience, 2011, 343(2011): 615-622.
[45] Song X. Ambient noise attenuation[M]. 2011.
[46] Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys Res Lett, 2004, 31(7): 1615-1619.
[47] Webb S C. Broadband seismology and noise under the ocean[J]. Rev Geophys, 1998, 36(1): 105-142.
[48] Bensen G D, Ritzwoller M H, Barmin M P, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3): 1239-1260.
[49] Lay T, Kanamori H. Japan earthquake[J]. Phys Today, 2011, 64(12): 33-40.
[50] Lay T, Fujii Y, Geist E, et al. Introduction to the special issue on the 2011 Tohoku Earthquake and Tsunami[J]. Bull Seismol Soc Am, 2013, 103(2B): 1165-1170.
[51] Nettles M, Ekstr m G, Koss H C. Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks[J]. Earth planets and space, 2011, 63(7): 519-523.
[52] Hirose F, Miyaoka K, Hayashimoto N, et al. Outline of the 2011 off the Pacific coast of Tohoku Earthquake (MW9.0)-Seismicity: foreshocks, mainshock, aftershocks, and induced activity[J]. Earth planets and space, 2011, 63(7): 513-518. |