欢迎访问《地震》,

地震 ›› 2017, Vol. 37 ›› Issue (4): 173-180.

• • 上一篇    

基于改进型BP网络的空间电场分类研究

张伟, 李忠, 刘海军, 安建琴, 宋奕瑶   

  1. 防灾科技学院 灾害信息工程系, 河北 三河 065201
  • 收稿日期:2016-12-12 发布日期:2019-08-09
  • 作者简介:张伟(1980-), 男, 黑龙江林口人, 讲师, 主要从事模式识别等研究。
  • 基金资助:
    中央高校基本科研业务费专项资金(ZY20140216, ZY20160106); 河北省科技支撑计划项目(13210122)

Classification of Space Electric Field Based on Improved BP Network

ZHANG Wei,LI Zhong,LIU Hai-jun,AN Jian-qin,SONG Yi-yao   

  1. Institute of Disaster Prevention, Hebei Sanhe 065201, China
  • Received:2016-12-12 Published:2019-08-09

摘要: 空间电场信号异常识别是研究地震引起电离层扰动的重要内容。 将空间超低频电场电位数据看作随机数字信号, 以均值、 均方差、 偏度和峰度等四个指标进行描述, 采用“5·12”汶川大地震前空间超低频电场电位数据作为原始数据, 训练改进型BP神经网络, 建立了空间电场信号异常分类识别模型, 并以SOM神经网络进行验证。 计算结果显示, 空间超低频电场电位异常信号主要集中在5°~25°N, 88°~120°E之间的区域, 汶川大地震影响范围内的电离层扰动, 可能是汶川地震发生前引起的, 这与前人研究一致, 说明采用改进型BP神经网络异常分类识别模型研究地震引起的电离层扰动是可行的。

关键词: BP网络, 空间电场信号, 随机信号特征, 汶川大地震

Abstract: The anomaly recognition of spatial electric field is an important issue in studying the ionospheric disturbance caused by earthquakes. As a random digital signal, the Ultra-Low Frequency (ULF) space electric field data can be disrobed by the four features of the mean, variance, skewness and kurtosis. The ULF data recorded before the 2008 Wenchuan earthquake was used as original data to train the improved BP neural network, the identification model is established for the classification of abnormal signal of space electric field, which is verified by SOM neural network. The calculation results show that the abnormal signal is concentrated in the area between 5°~25°N and 88°~120°E, which lie within the influence scope of and may be caused by the Wenchuan earthquake. This fact is consistent with previous research results and proves that the improved BP neural network model is reasonable.

Key words: BP network, Space electric field signals, Random signal features, The 2008 Wenchuan earthquake

中图分类号: